While facets of uniform polytopes by definition are uniform as well – in fact, the dynkin diagram of a facet of a Wythoffian polytope is derived by omission of just one node (and its incident links) – this does not hold true with respect to vertex figures. On the contrary, most generally the vertex figure of a uniform polytope is not uniform. By means of the concept of lace simplices the vertex figure of Wytoffian polytopes can be derived none the less systematically (as is outlined there).
|
Vertex Figure
|
Used in Polytopes
|
| 0_11111 |
1_11111 |
| 2 2{4}p |
rect-2{3}2{3}2{4}p |
| 2dah |
2kaje |
| 2doe |
2sishi |
| 2firp |
2dah |
| 2gad |
2fix, 2gashi |
| 2gike |
2gahi, 2gax |
| 2gissid |
2gaghi |
| 2hehad |
2thox |
| 2ike |
2ex, 2gishi |
| 2sissid |
2gofix, 2gohi |
| 2tet |
2gogishi, 2hi, 2pen, 2tes |
| 2thah |
2tho |
| 2thahp |
2rhohid |
| 2tho |
2hehad |
| 2thox |
2guhsa |
| 2_111 |
3_111 |
| 2{3}2{4}3 |
2{3}2{3}2{4}3 |
| 2{3}2{4}4 |
2{3}2{3}2{4}4 |
| 2{3}2{4}5 |
2{3}2{3}2{4}5 |
| 2{3}2{4}p |
2{3}2{3}2{4}p |
| 2{4}3 |
2{3}2{4}3 |
| 2{4}4 |
2{3}2{4}4, 2{3}2{4}5 |
| 2{4}p |
2{3}2{4}p, p{4}2{4}p-tiling |
| 2{4}r |
p{4}2{4}r-tiling |
| 3 2 |
rect-3{3}3{4}2, rect-3{4}2{3}2, rect-4{4}2{3}2, rect-5{4}2{3}2 |
| 3 3 |
rect-3{3}3{4}3-tiling |
| 3 3{3}3 |
rect-3{3}3{3}3{3}3 |
| 3_22 |
4_22 |
| 3{3}3 |
3{4}3{3}3-tiling, 4{3}4{3}4-tiling |
| 3{3}3 || dual-3{3}3 |
maxexp-3{3}3{3}3{3}3 |
| 3{4}2 |
3{3}3{4}2 |
| 3{4}3 |
3{3}3{4}3-tiling |
| 4 2 |
rect-4{3}4{4}2-tiling |
| 4_31 |
5_31 |
| 4{3}4 |
2{4}4{3}4-tiling |
| 4{4}2 |
4{3}4{4}2-tiling |
| {4} |
p{4}2{4}2-tiling |
| 6doe |
6sishi |
| 6tet |
6tes |
| ahexah |
x3o3o3o *b3o3*c |
| ax |
o3o3o3o3o4o3x |
| bad-verf |
bad |
| bay |
3_41 |
| bayoh |
3_51 |
| bend-verf |
bend |
| bicont |
odipt |
| bidhin |
tedjak |
| bidrap |
bidhin |
| bif |
2_42 |
| breday |
1_62 |
| brene |
bifoh |
| bril |
haxabrag, lin, moarojak |
| broc |
bif |
| brox |
1_311 |
| cabbix-verf |
cabbix |
| cadditradid |
dittady+dox |
| caddix-verf |
caddix |
| chad-verf |
chad |
| chon |
x3o4o3o4o |
| cid |
ex+fix, gishi+gashi |
| co |
octet, x4o4o *b3o, x8o4o *b3o |
| compound |
5-doe-comp |
| cubaope |
icaf |
| cube |
aubautipip, bauautipip, bicyte ausodip, biscpoxic, bitapna, bitefa, chi, cute, cyte cubau sodip, dapabdi poxic, dox, eoctaco, haucope, hautope, kitapna, kitefa, m3o3m3o, o3o4o5x, octaco, octatricu, pexic, pibhaki, poxic, radh, stoc, tautisdip, tetacoaoct, tibbid |
| cubpy |
icopy |
| dah |
kaje |
| daj |
nal |
| deca |
o3o3o3o *b3x3*c |
| dibhid-verf |
dibhid |
| did |
reduced did||id, x5o5o *b5/2o |
| dihin |
dijak, hixalrix |
| dihinpy |
dijakpy |
| dijak |
Dutour 7D Type A, gahax, jaka |
| dijakpy |
jakapy |
| disdi-verf |
disdi |
| ditdid |
dittady |
| ditetetrat |
x3o3o4o4*b |
| ditti |
idhi |
| doe |
ikhon, o3o5o5x, pibhaki, quidex, sishi |
| dot |
dotet, hinro, mo |
| dotip |
rojkoh |
| dual(r1 r2) |
p1{q1}r1-p2{q2}r2-tiling |
| dudsi |
paphicki |
| ek |
vee |
| ekip |
rake |
| enep |
ru |
| ex |
pente, phitte, pitest |
| f v3o |
ragaghi |
| f v5o |
righi |
| f x3o |
BAVFfxoo xFofxFVo3xxFxooxo5xooxFfoV&#zx, DCBAVFfxoo xxxFofxFVo3xoxxFxooxo5ofxooxFfoV&#zx, biscrahi, fooo3xxoF3xfxo *b3oxFo&#zx, oFfoo3ooxxF3Fxoxo3ooffx&#zx, oct || (x,f)-co || (F,x)-co || (x,x,f)-toe || F-oct || (f,x)-tut || tet, oct || (x,f)-tut || (F,x)-co || (x,x,f)-toe || F-oct || (f,x)-tut || tet, ooofxfooo3xoxxoxxox5ofxofoxfo&#xt, oooxfxooo3xoxoxoxox5ofxfofxfo&#xt, oxofxfooo3xxxxoxxox5ooxofoxfo&#xt, srid || ff-ike || f-doe || ff-ike || srid, xFfxo3xoxoF3fxooo3oofFx&#zx, xooFxxFfooFoofo3xxFooFxxxFooFxx3ofooFoofFxxFoox&#xt, xoxFoFxox3oxoooooxo5ooxofoxoo&#xt |
| f x3o3o |
rahitte |
| f x4o |
riddoh |
| f x5/2o |
raghi |
| f x5o |
ripped |
| f3o3x |
x5o3o3o3*a |
| f3o4x |
x5o3o4o3*a |
| f3o5x |
x5o3o5o3*a |
| fenandoh-verf |
fenandoh |
| fidoh-verf |
fidoh |
| firp |
dah |
| fitetaltet |
phap |
| fix |
fipte |
| fy |
goh |
| gabdacan-verf |
gabdacan |
| gacid |
gahi+gohi, gax+gofix |
| gad |
fipech, fipped, fix, gashi |
| gadencorn-verf |
gadencorn |
| gafthi-verf |
gafthi |
| gafwan-verf |
gafwan |
| gaghi |
fighitte |
| gahax |
Dutour 8D Type A, naqalaq, zahesa |
| gahi |
fatfipte |
| gancpan-verf |
gancpan |
| gatopin-verf |
gatopin |
| gee |
axh, zee |
| geep |
rek, zarez |
| geepy |
zeepy |
| getut-verf |
getut |
| gicdatrid |
gidtixhi+dox |
| gidtid |
gidtixhi |
| gike |
gax, padiap |
| gipbin-verf |
gipbin |
| girfthi-verf |
girfthi |
| gissid |
gaghi |
| gissidagike |
gogishiagax |
| gissidragike |
gogishiragax |
| goh |
6_21 |
| gohi |
tifipte |
| gyepip |
2/10-luna of ex, 3/10-luna of ex, 4/10-luna of ex, biscex, rotunda of ex, telex, xofo3ooox5oxoo&#xt |
| gyspid |
zucypit |
| han |
daj |
| hax |
Dutour 7D Type A, haxt, jakamo, laq |
| haxip |
rinquoh |
| he |
linoh |
| hehad |
thox |
| henne |
2_61 |
| hep |
rahet |
| hesa |
Dutour 8D Type A, bay, hauhocto, laqalin |
| hetrat |
hetoh |
| hex |
pex tac, shitte, tac, x4o3o3o4o |
| hexasc |
taccasc |
| hexat |
hedhon, thon, trah |
| hexete |
taccete |
| hexip |
rag, rixascad, taccarat |
| hexpy |
tacpy |
| hext |
x3o3o3o4o3o |
| hi |
hi - 120 ikadoes, sishitte |
| hin |
hint, jak, madek |
| hinnip |
jakarojak, ragasochax, ranq |
| hinpy |
jakpy |
| hint |
jakte |
| hip |
rath |
| hipat |
x3o5o6o |
| hit-verf |
hit |
| hixadot |
jakamo |
| hixalrix |
gahax, hopalril |
| hixip |
octatetdip, rapatrapen, roc, trial trapen |
| hocto |
bayoh |
| hog dhidicup verf |
hog dhidicup |
| hopalril |
ocalroc |
| hopip |
rene |
| howoh-verf |
2howoh, howoh |
| hudsi |
paphacki |
| ico |
hext |
| icot |
1_1111 |
| id |
apech, reduced did||id |
| ike |
2/10-luna of ex, 3/10-luna of ex, 4/10-luna of ex, biscex, cydadex, ditusna, dodeca-diminished rotunda of ex, eikedpy, gishi, icau prissi, id || f-ike || ike || pt, ite, kepisna, kidisna, pedhon, pedisna, rotunda of ex, sody, spohi |
| ikhon |
gishitte |
| ipe |
rapente |
| irl-verf |
irl |
| irohlohn-verf |
irohlohn |
| jak |
jakte, naq |
| jaka |
naqalaq |
| jakip |
riffy |
| jakoh |
3_22 |
| jakpy |
naqpy |
| kafandoh-verf |
kafandoh |
| kaje |
quil |
| laq |
naquoh |
| lawx-verf |
lawx |
| lin |
2_32 |
| m m3o |
m3m3m3o, m3o3m3o, m3o3o3m, m3o3o4m |
| m2m3o |
triddit |
| mesdi-verf |
mesdi |
| mibdi |
2/10-luna of ex, hexdex, idimex |
| mo |
jakoh |
| n-ap |
n-apt |
| n-p |
n-pidpy |
| nal |
fib |
| naq |
fy |
| naqpe |
rigoh |
| naquoh |
4_31 |
| nat-verf |
nat |
| nit |
1_211 |
| ocpe |
reday |
| oct |
baudeca, co || f-oct || oct || pt, doehon, haddet, m3o3o4m, pex hex, sistic, stico, tabene |
| oct+6{3} |
hex+8oct |
| octacube |
icoap, tessap |
| octasc |
hexasc |
| octatepe |
hexaf, rixa |
| octdip |
traxh |
| octepe |
hexepe |
| octete |
hexete |
| octhix |
tarn |
| octpen |
tro |
| octpy |
hexpy |
| octpyp |
trial troct |
| odip |
bicyte gysrit, cyte gysrit, cyted srit |
| oho |
tehtrah |
| ope |
hexaico, oct-first lune of rat, opet, oxo oxo3oox4ooo&#xt, rapaspid, rat, tet-first lune of rat |
| ox4oo&#q |
3-squippyp-blend, ope |
| oxqxo8ooooo&#qt |
lt-(o8o4x *b3x) |
| p 2 |
rect-p{4}2{3}2, rect-p{4}2{4}2-tiling |
| p 2{3}2 |
rect-p{4}2{3}2{3}2 |
| p r |
rect-p{4}2{4}r-tiling |
| P-ap |
x4oPo4x |
| p2p5p |
gap dual |
| pap |
1/10-luna of ex, id || srid || F-ike || ti, ikadoaid, ikadoe, twau doaid, twau sridati |
| peat |
x5/2o5o4o |
| pedip |
o5o3x3o5o |
| pedpy |
ite |
| pen |
hitte |
| penaf |
hixaf |
| pendip |
icoy |
| penhex |
nav |
| penhix |
teru |
| penit |
hixit |
| penp |
octa tratet, ril, trial tratet |
| pent |
o3o3o3o4o3x |
| pepat |
sipped |
| peppy |
ikepy |
| pinnip |
han |
| pip |
biscrox, fxoo2ofVx3xxoo5xoof&zx, icau pretasto, ikaid, ike||id||srid||ti, oofoo3oxoxo5xooox&#xt, owaudope, peppia pero, rite, telex, twau iddip, twau sriddip, twau tipe, twausniddip, xoxFoFxox3oxoooooxo5ooxofoxoo&#xt, xoxFofo3oxoofox5ooxooxx&#xt, xoxxFxxox3oxoxoxoxo5ooxoooxoo&#xt |
| p{4}2 |
2{4}p{4}2-tiling |
| q x3o |
arse aurap, baudeca, mibdirit, pactat, pexrit, tetatut |
| q x3o3o |
rin |
| q x3o3o3o |
rax |
| q x4o |
o3xØx3*a3xØx3*a, octatoe, rich |
| q x5o |
ripech |
| q3o3x |
gadtatdic |
| q3o4x |
cohon |
| q3o5x |
x4o3o5o3*a |
| qo oq&#h |
batch |
| quacant-verf |
quacant |
| quil |
yab |
| raccoth-verf |
raccoth |
| rad |
m3o3m3o, tabene, tibbit |
| radah-verf |
radah |
| rag |
haxh |
| rap |
hin, nibdihin, rapt, todin |
| rapesc |
hinsc |
| rappip |
hinanit, hinanitarita, ratasiphin, rojak |
| rappy |
hinpy |
| rappyp |
trial trarap |
| rapt |
hint |
| rat |
hinoh |
| rawcax-verf |
rawcax |
| reco |
o3o3o4s4*a |
| reday |
hede |
| rene |
henne |
| rhote |
tibbic |
| ril |
hesa |
| rillip |
robay |
| rinah-verf |
rinah |
| rix |
gedak, hax, hixa tetaope |
| rixahixip |
hinaf |
| rixasc |
haxesc |
| rixip |
haxabrox, rojaka hejak, rolaq |
| rixpy |
haxpy |
| roc |
hocto |
| rocip |
robyah |
| rox |
hi - 120 ikadoes, x3o3o *b3o5o |
| safthi-verf |
safthi |
| scad |
cyxh |
| se |
stidox |
| sicdatrid |
sidtixhi+dox |
| sidtid |
ditdih, sidtixhi |
| sipped |
gotfipte |
| sirco |
gacocaddit |
| sirfthi-verf |
sirfthi |
| sishi |
gohitte |
| sissid |
gofix |
| sissidagad |
gaghi || gofix, gashia, sishi || fix |
| snifthi-verf |
snifthi |
| snit |
cube + n-p honeycomb |
| spid |
cypit |
| spil-verf |
spil |
| squaf |
icates |
| squahix |
bro |
| squahop |
barn |
| squap |
octacube, spiddish |
| squapen |
bersa |
| squasc |
octasc |
| squat |
octh |
| squatet |
brox, nitarin, rixasarx |
| squepe |
octepe |
| squete |
octete |
| squippy |
octpy |
| squippyp |
hexaico, traltisdip |
| squoc |
brade |
| squoct |
brinoh |
| srid |
x3o3o5o3*a |
| staf |
cyloh |
| stappy |
gikepy |
| starpglass |
starpglassit |
| stip |
gikagid, raggix |
| suph |
cyooh |
| tac |
gee, penth |
| taccasc |
geeasc |
| taccup |
garag, rez, rilastaf |
| tacpy |
geepy |
| teddi |
dodeca-diminished rotunda of ex, icau pretasto, idimex, ikadoaid, oFFxx3xxoof3fooxo3ooffx&#zx, telex, xofo3ooox3oxoo&#xt |
| tekah |
bichon, m3m3m3o |
| tepasc |
rixasc |
| tepe |
rix, tessarit, trial triddip |
| tepepy |
rixpy |
| tes |
durat, icarico, icot, oq3oq3oo4uo&#zh |
| tet |
3{4}2{3}2{3}2, 4hi, 4{4}2{3}2{3}2, 5{4}2{3}2{3}2, 6pen, gap dual, gico, gistic, gogishi, heath, m3m3o3o, m3o3o3m, m3o3o4m, oqo3ooq&#xt, quidex, radh, tibbic, tibbid, tibbit |
| tet-dim-doe |
pd{3,5,3} |
| teta ope |
penal rappip |
| tetaf |
hixalrix, penaf |
| tetcube |
0_3111 |
| tetdip |
he |
| tete |
penit |
| tethex |
tark |
| tethix |
treday |
| tethop |
tru |
| tetoct |
bragabrox, sez |
| tetpen |
trene |
| tetrap |
torfy |
| tettac |
tarv |
| tettepe |
lanquoh |
| thah |
tho |
| thahp |
rhohid |
| that |
ahach |
| thex |
oq3oq3oo4uo&#zh |
| tho |
hehad |
| thox |
guhsa |
| ti |
aphexah |
| tibbid |
bidot, durat |
| tic |
o3o4x4o4*b |
| tid |
o3o5x5o5*b |
| tikit |
bideca, m3m3m3o, m3m3o3o |
| tin-verf |
tin |
| tisdip |
icarit, nit, pabac sirn, rapasrip |
| tobcu |
gytoh |
| toe |
ashexah, do3ox3ox4oo&#zh |
| topax-verf |
topax |
| tracube |
0_2111 |
| traf |
bidhin, dihin, tetaf |
| traffip |
hinanitarita |
| trahex |
barz, ragabrag |
| trahin |
borfy |
| trahix |
brene |
| trapen |
broc |
| trarap |
branq |
| trat |
hihexah |
| tratac |
bark |
| tratepe |
lanq |
| tratet |
bril, penarappip |
| tratetpy |
brilpy |
| tratratet |
0_322 |
| tratrip |
dottasibrid, nitasirhin, ram |
| traw |
tratgyt |
| treday |
1_53 |
| trene |
1_43 |
| triddip |
dot, teta ope |
| triddippy |
dotpy |
| trigee |
brav |
| trihop |
breday |
| trioc |
bru |
| trip |
aurap, tetripau tuttip, tript, turap |
| triphix |
ribfoh |
| trippasc |
rapesc |
| trippen |
buffy |
| trippepe |
rapepe |
| trippy |
rappy |
| tript |
rapt |
| trittip |
ramoh |
| trizee |
brake |
| troct |
brag, cytedbrag, ratanit |
| turap |
hosiap |
| tut |
ahexah, oq3oq3oo4dx&#zh |
| tutip |
o3x3o3o *b3o3*c |
| tutrip |
turap |
| v f3o |
3rasishi, rasishi |
| v f5/2o |
ragashi |
| v x3o |
rigogishi |
| v x5o |
ragishi |
| v3o3x |
gadtaxady |
| v3x3o |
sidtaxhi |
| vee |
ka |
| x f3o |
rih |
| x f5/2o |
rofix |
| x q3o |
coatobcu, coatoe, dirico, oxux3xxoo4oooo&#xt, pabdirico, poccont, pox rico, wx ox3xx4oo&#zx |
| x v5o |
rigfix |
| x-aze × q-aze |
x3oØo3*a4oØo4*a |
| x3v3o |
dattady |
| x4o4q |
x3oØo4*a3oØo4*a |
| xfV fVx Vxf&#zq |
x3o5x3o5x3o5*aØ*d *bØ*e *cØ*f |
| xo oq&#q |
gybeffip, tisdip |
| xo ox&#h |
deca |
| xo ox&#k |
cont |
| xo ox&#q |
triddip, xxo ooo3oxx&#xt |
| xo xo3ox&#q |
spix |
| xo2oq&#q |
3-tisdip-blend |
| xo3/2ox&#q |
firp |
| xo3oo&#q |
tepe, xxo ooo3oxx&#xt |
| xo3oo3ox&#q |
penaspid, scad, xo3oo3oo3ox&#q |
| xo3ox&#h |
batatoh |
| xo3ox&#q |
etetaco, gyspid, hocubasiddo, spid, tetaco, tetaco altut, tetaco ausrip, tetacoa cube, tetacoaoct, xo3oo3ox&#q |
| xo4ox&#q |
spic |
| xx ox&#q |
tetaco ausrip |
| xxo oxx&#q |
card |
| xxo&#q |
cope, eoctaco, etetaco, tobcupe, tricupe |
| zee |
ek, hepth |
| zeep |
riv |