Acronym | chon | ||||||||||||||||||||||||||
Name |
cubic honeycomb, 3D hypercubical honeycomb (δ3), Voronoi complex of primitive cubical lattice, Delone complex of primitive cubical lattice | ||||||||||||||||||||||||||
© © © | |||||||||||||||||||||||||||
Vertex figure |
© | ||||||||||||||||||||||||||
Vertex layers
(first ones only) |
| ||||||||||||||||||||||||||
Coordinates | (i, j, k) i.e. all integer touples | ||||||||||||||||||||||||||
Dual | (selfdual) | ||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||
External links |
The Voronoi complex and the Delone complex of the primitive cubic lattice are relatively shifted copies of this cubic honeycomb.
The cubes of this honeycomb could be alternatedly rejected, then re-connected by means of squats instead; this is what cuhsquah would be.
This honeycomb can be considered as the inifinite blend (or stack) of a single monostratic slab thereof, which is squattip.
A facial subset, built from the lacing squares of the 4-prismatic cells of x4o3o4x each, such that just 6 of those squares remain at each vertex, by itself describes the regular infinite skew polyhedron x4o6o|4, a modwrap of the hyperbolical tiling x4o6o.
Incidence matrix according to Dynkin symbol
x4o3o4o (N → ∞) . . . . | N ♦ 6 | 12 | 8 --------+---+----+----+-- x . . . | 2 | 3N | 4 | 4 --------+---+----+----+-- x4o . . | 4 | 4 | 3N | 2 --------+---+----+----+-- x4o3o . ♦ 8 | 12 | 6 | N snubbed forms: s4o3o4o
x4o3o4x (N → ∞) . . . . | 8N ♦ 3 3 | 3 6 3 | 1 3 3 1 --------+----+---------+-----------+---------- x . . . | 2 | 12N * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 12N | 0 2 2 | 0 1 2 1 --------+----+---------+-----------+---------- x4o . . | 4 | 4 0 | 6N * * | 1 1 0 0 x . . x | 4 | 2 2 | * 12N * | 0 1 1 0 . . o4x | 4 | 0 4 | * * 6N | 0 0 1 1 --------+----+---------+-----------+---------- x4o3o . ♦ 8 | 12 0 | 6 0 0 | N * * * x4o . x ♦ 8 | 8 4 | 2 4 0 | * 3N * * x . o4x ♦ 8 | 4 8 | 0 4 2 | * * 3N * . o3o4x ♦ 8 | 0 12 | 0 0 6 | * * * N snubbed forms: s4o3o4x, s4o3o4s, s4o3o4s'
o3o3o *b4x (N → ∞) . . . . | 2N ♦ 6 | 12 | 4 4 -----------+----+----+----+---- . . . x | 2 | 6N | 4 | 2 2 -----------+----+----+----+---- . o . *b4x | 4 | 4 | 6N | 1 1 -----------+----+----+----+---- o3o . *b4x ♦ 8 | 12 | 6 | N * . o3o *b4x ♦ 8 | 12 | 6 | * N snubbed forms: o3o3o *b4s
x4o3o4/3o (N → ∞) . . . . | N ♦ 6 | 12 | 8 ----------+---+----+----+-- x . . . | 2 | 3N | 4 | 4 ----------+---+----+----+-- x4o . . | 4 | 4 | 3N | 2 ----------+---+----+----+-- x4o3o . ♦ 8 | 12 | 6 | N
o4o3o4/3x (N → ∞) . . . . | N ♦ 6 | 12 | 8 ----------+---+----+----+-- . . . x | 2 | 3N | 4 | 4 ----------+---+----+----+-- . . o4/3x | 4 | 4 | 3N | 2 ----------+---+----+----+-- . o3o4/3x ♦ 8 | 12 | 6 | N
x4o3o4/3x (N → ∞) . . . . | 8N ♦ 3 3 | 3 6 3 | 1 3 3 1 ----------+----+---------+-----------+---------- x . . . | 2 | 12N * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 12N | 0 2 2 | 0 1 2 1 ----------+----+---------+-----------+---------- x4o . . | 4 | 4 0 | 6N * * | 1 1 0 0 x . . x | 4 | 2 2 | * 12N * | 0 1 1 0 . . o4/3x | 4 | 0 4 | * * 6N | 0 0 1 1 ----------+----+---------+-----------+---------- x4o3o . ♦ 8 | 12 0 | 6 0 0 | N * * * x4o . x ♦ 8 | 8 4 | 2 4 0 | * 3N * * x . o4/3x ♦ 8 | 4 8 | 0 4 2 | * * 3N * . o3o4/3x ♦ 8 | 0 12 | 0 0 6 | * * * N
x4/3o3o4/3o (N → ∞) . . . . | N ♦ 6 | 12 | 8 ------------+---+----+----+-- x . . . | 2 | 3N | 4 | 4 ------------+---+----+----+-- x4/3o . . | 4 | 4 | 3N | 2 ------------+---+----+----+-- x4/3o3o . ♦ 8 | 12 | 6 | N
x4/3o3o4/3x (N → ∞) . . . . | 8N ♦ 3 3 | 3 6 3 | 1 3 3 1 ------------+----+---------+-----------+---------- x . . . | 2 | 12N * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 12N | 0 2 2 | 0 1 2 1 ------------+----+---------+-----------+---------- x4/3o . . | 4 | 4 0 | 6N * * | 1 1 0 0 x . . x | 4 | 2 2 | * 12N * | 0 1 1 0 . . o4/3x | 4 | 0 4 | * * 6N | 0 0 1 1 ------------+----+---------+-----------+---------- x4/3o3o . ♦ 8 | 12 0 | 6 0 0 | N * * * x4/3o . x ♦ 8 | 8 4 | 2 4 0 | * 3N * * x . o4/3x ♦ 8 | 4 8 | 0 4 2 | * * 3N * . o3o4/3x ♦ 8 | 0 12 | 0 0 6 | * * * N
o3o3o *b4/3x (N → ∞) . . . . | 2N ♦ 6 | 12 | 4 4 -------------+----+----+----+---- . . . x | 2 | 6N | 4 | 2 2 -------------+----+----+----+---- . o . *b4/3x | 4 | 4 | 6N | 1 1 -------------+----+----+----+---- o3o . *b4/3x ♦ 8 | 12 | 6 | N * . o3o *b4/3x ♦ 8 | 12 | 6 | * N snubbed forms: o3o3o *b4s
x∞o x4o4o (N → ∞) . . . . . | N ♦ 2 4 | 8 4 | 8 ----------+---+------+------+-- x . . . . | 2 | N * | 4 0 | 4 . . x . . | 2 | * 2N | 2 2 | 4 ----------+---+------+------+-- x . x . . | 4 | 2 2 | 2N * | 2 . . x4o . | 4 | 0 4 | * N | 2 ----------+---+------+------+-- x . x4o . ♦ 8 | 4 8 | 4 2 | N snubbed forms: s∞o2s4o4o
x∞o o4x4o (N → ∞) . . . . . | 2N ♦ 2 4 | 8 2 2 | 4 4 ----------+----+-------+--------+---- x . . . . | 2 | 2N * | 4 0 0 | 2 2 . . . x . | 2 | * 4N | 2 1 1 | 2 2 ----------+----+-------+--------+---- x . . x . | 4 | 2 2 | 4N * * | 1 1 . . o4x . | 4 | 0 4 | * N * | 2 0 . . . x4o | 4 | 0 4 | * * N | 0 2 ----------+----+-------+--------+---- x . o4x . ♦ 8 | 4 8 | 4 2 0 | N * x . . x4o ♦ 8 | 4 8 | 4 0 2 | * N snubbed forms: s∞o2o4s4o
x∞o x4o4x (N → ∞) . . . . . | 4N ♦ 2 2 2 | 4 4 1 2 1 | 2 4 2 ----------+----+----------+--------------+------- x . . . . | 2 | 4N * * | 2 2 0 0 0 | 1 2 1 . . x . . | 2 | * 4N * | 2 0 1 1 0 | 2 2 0 . . . . x | 2 | * * 4N | 0 2 0 1 1 | 0 2 2 ----------+----+----------+--------------+------- x . x . . | 4 | 2 2 0 | 4N * * * * | 1 1 0 x . . . x | 4 | 2 0 2 | * 4N * * * | 0 1 1 . . x4o . | 4 | 0 4 0 | * * N * * | 2 0 0 . . x . x | 4 | 0 2 2 | * * * 2N * | 0 2 0 . . . o4x | 4 | 0 0 4 | * * * * N | 0 0 2 ----------+----+----------+--------------+------- x . x4o . ♦ 8 | 4 8 0 | 4 0 2 0 0 | N * * x . x . x ♦ 8 | 4 4 4 | 2 2 0 2 0 | * 2N * x . . o4x ♦ 8 | 4 0 8 | 0 4 0 0 2 | * * N snubbed forms: s∞o2s4o4x
x∞x x4o4o (N → ∞) . . . . . | 2N ♦ 1 1 4 | 4 4 4 | 4 4 ----------+----+--------+----------+---- x . . . . | 2 | N * * | 4 0 0 | 4 0 . x . . . | 2 | * N * | 4 0 0 | 0 4 . . x . . | 2 | * * 4N | 1 1 2 | 2 2 ----------+----+--------+----------+---- x . x . . | 4 | 2 0 2 | 2N * * | 2 0 . x x . . | 4 | 0 2 2 | * 2N * | 0 2 . . x4o . | 4 | 0 0 4 | * * 2N | 1 1 ----------+----+--------+----------+---- x . x4o . ♦ 8 | 4 0 8 | 4 0 2 | N . x x4o . ♦ 8 | 0 4 8 | 0 4 2 | N snubbed forms: s∞x2s4o4o
x∞x o4x4o (N → ∞) . . . . . | 4N ♦ 1 1 4 | 4 4 2 2 | 2 2 2 2 ----------+----+----------+-------------+-------- x . . . . | 2 | 2N * * | 4 0 0 0 | 2 2 0 0 . x . . . | 2 | * 2N * | 0 4 0 0 | 0 0 2 2 . . . x . | 2 | * * 8N | 1 1 1 1 | 1 1 1 1 ----------+----+----------+-------------+-------- x . . x . | 4 | 2 0 2 | 4N * * * | 1 1 0 0 . x . x . | 4 | 0 2 2 | * 4N * * | 0 0 1 1 . . o4x . | 4 | 0 0 4 | * * 2N * | 1 0 1 0 . . . x4o | 4 | 0 0 4 | * * * 2N | 0 1 0 1 ----------+----+----------+-------------+-------- x . o4x . ♦ 8 | 4 0 8 | 4 0 2 0 | N * * * x . . x4o ♦ 8 | 4 0 8 | 4 0 0 2 | * N * * . x o4x . ♦ 8 | 0 4 8 | 0 4 2 0 | * * N * . x . x4o ♦ 8 | 0 4 8 | 0 4 0 2 | * * * N snubbed forms: s∞x2o4s4o
x∞x x4o4x (N → ∞) . . . . . | 8N ♦ 1 1 2 2 | 2 2 2 2 1 2 1 | 1 2 1 1 2 1 ----------+----+-------------+----------------------+-------------- x . . . . | 2 | 4N * * * | 2 2 0 0 0 0 0 | 1 2 1 0 0 0 . x . . . | 2 | * 4N * * | 0 0 2 2 0 0 0 | 0 0 0 1 2 1 . . x . . | 2 | * * 8N * | 1 0 1 0 1 1 0 | 1 1 0 1 1 0 . . . . x | 2 | * * * 8N | 0 1 0 1 0 1 1 | 0 1 1 0 1 1 ----------+----+-------------+----------------------+-------------- x . x . . | 4 | 2 0 2 0 | 4N * * * * * * | 1 1 0 0 0 0 x . . . x | 4 | 2 0 0 2 | * 4N * * * * * | 0 1 1 0 0 0 . x x . . | 4 | 0 2 2 0 | * * 4N * * * * | 0 0 0 1 1 0 . x . . x | 4 | 0 2 0 2 | * * * 4N * * * | 0 0 0 0 1 1 . . x4o . | 4 | 0 0 4 0 | * * * * 2N * * | 1 0 0 1 0 0 . . x . x | 4 | 0 0 2 2 | * * * * * 4N * | 0 1 0 0 1 0 . . . o4x | 4 | 0 0 0 4 | * * * * * * 2N | 0 0 1 0 0 1 ----------+----+-------------+----------------------+-------------- x . x4o . ♦ 8 | 4 0 8 0 | 4 0 0 0 2 0 0 | N * * * * * x . x . x ♦ 8 | 4 0 4 4 | 2 2 0 0 0 2 0 | * 2N * * * * x . . o4x ♦ 8 | 4 0 0 8 | 0 4 0 0 0 0 2 | * * N * * * . x x4o . ♦ 8 | 0 4 8 0 | 0 0 4 0 2 0 0 | * * * N * * . x x . x ♦ 8 | 0 4 4 4 | 0 0 2 2 0 2 0 | * * * * 2N * . x . o4x ♦ 8 | 0 4 0 8 | 0 0 0 4 0 0 2 | * * * * * N
x∞o x∞o x∞o (N → ∞) . . . . . . | N ♦ 2 2 2 | 4 4 4 | 8 ------------+---+-------+-------+-- x . . . . . | 2 | N * * | 2 2 0 | 4 . . x . . . | 2 | * N * | 2 0 2 | 4 . . . . x . | 2 | * * N | 0 2 2 | 4 ------------+---+-------+-------+-- x . x . . . | 4 | 2 2 0 | N * * | 2 x . . . x . | 4 | 2 0 2 | * N * | 2 . . x . x . | 4 | 0 2 2 | * * N | 2 ------------+---+-------+-------+-- x . x . x . ♦ 8 | 4 4 4 | 2 2 2 | N
x∞x x∞o x∞o (N → ∞) . . . . . . | 2N ♦ 1 1 2 2 | 2 2 2 2 4 | 4 4 ------------+----+-----------+------------+---- x . . . . . | 2 | N * * * | 2 2 0 0 0 | 4 0 . x . . . . | 2 | * N * * | 0 0 2 2 0 | 0 4 . . x . . . | 2 | * * 2N * | 1 0 1 0 2 | 2 2 . . . . x . | 2 | * * * 2N | 0 1 0 1 2 | 2 2 ------------+----+-----------+------------+---- x . x . . . | 4 | 2 0 2 0 | N * * * * | 2 0 x . . . x . | 4 | 2 0 0 2 | * N * * * | 2 0 . x x . . . | 4 | 0 2 2 0 | * * N * * | 0 2 . x . . x . | 4 | 0 2 0 2 | * * * N * | 0 2 . . x . x . | 4 | 0 0 2 2 | * * * * 2N | 1 1 ------------+----+-----------+------------+---- x . x . x . ♦ 8 | 4 0 4 4 | 2 2 0 0 2 | N * . x x . x . ♦ 8 | 0 4 4 4 | 0 0 2 2 2 | * N
x∞x x∞x x∞o (N → ∞) . . . . . . | 4N ♦ 1 1 1 1 2 | 1 1 2 1 1 2 2 2 | 2 2 2 2 ------------+----+----------------+---------------------+-------- x . . . . . | 2 | 2N * * * * | 1 1 2 0 0 0 0 0 | 2 2 0 0 . x . . . . | 2 | * 2N * * * | 0 0 0 1 1 2 0 0 | 0 0 2 2 . . x . . . | 2 | * * 2N * * | 1 0 0 1 0 0 2 0 | 2 0 2 0 . . . x . . | 2 | * * * 2N * | 0 1 0 0 1 0 0 2 | 0 2 0 2 . . . . x . | 2 | * * * * 4N | 0 0 1 0 0 1 1 1 | 1 1 1 1 ------------+----+----------------+---------------------+-------- x . x . . . | 4 | 2 0 2 0 0 | N * * * * * * * | 2 0 0 0 x . . x . . | 4 | 2 0 0 2 0 | * N * * * * * * | 0 2 0 0 x . . . x . | 4 | 2 0 0 0 2 | * * 2N * * * * * | 1 1 0 0 . x x . . . | 4 | 0 2 2 0 0 | * * * N * * * * | 0 0 2 0 . x . x . . | 4 | 0 2 0 2 0 | * * * * N * * * | 0 0 0 2 . x . . x . | 4 | 0 2 0 0 2 | * * * * * 2N * * | 0 0 1 1 . . x . x . | 4 | 0 0 2 0 2 | * * * * * * 2N * | 1 0 1 0 . . . x x . | 4 | 0 0 0 2 2 | * * * * * * * 2N | 0 1 0 1 ------------+----+----------------+---------------------+-------- x . x . x . ♦ 8 | 4 0 4 0 4 | 2 0 2 0 0 0 2 0 | N * * * x . . x x . ♦ 8 | 4 0 0 4 4 | 0 2 2 0 0 0 0 2 | * N * * . x x . x . ♦ 8 | 0 4 4 0 4 | 0 0 0 2 0 2 2 0 | * * N * . x . x x . ♦ 8 | 0 4 0 4 4 | 0 0 0 0 2 2 0 2 | * * * N
x∞x x∞x x∞x (N → ∞) . . . . . . | 8N ♦ 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 ------------+----+-------------------+-------------------------------------+---------------- x . . . . . | 2 | 4N * * * * * | 1 1 1 1 0 0 0 0 0 0 0 0 | 1 1 1 1 0 0 0 0 . x . . . . | 2 | * 4N * * * * | 0 0 0 0 1 1 1 1 0 0 0 0 | 0 0 0 0 1 1 1 1 . . x . . . | 2 | * * 4N * * * | 1 0 0 0 1 0 0 0 1 1 0 0 | 1 1 0 0 1 1 0 0 . . . x . . | 2 | * * * 4N * * | 0 1 0 0 0 1 0 0 0 0 1 1 | 0 0 1 1 0 0 1 1 . . . . x . | 2 | * * * * 4N * | 0 0 1 0 0 0 1 0 1 0 1 0 | 1 0 1 0 1 0 1 0 . . . . . x | 2 | * * * * * 4N | 0 0 0 1 0 0 0 1 0 1 0 1 | 0 1 0 1 0 1 0 1 ------------+----+-------------------+-------------------------------------+---------------- x . x . . . | 4 | 2 0 2 0 0 0 | 2N * * * * * * * * * * * | 1 1 0 0 0 0 0 0 x . . x . . | 4 | 2 0 0 2 0 0 | * 2N * * * * * * * * * * | 0 0 1 1 0 0 0 0 x . . . x . | 4 | 2 0 0 0 2 0 | * * 2N * * * * * * * * * | 1 0 1 0 0 0 0 0 x . . . . x | 4 | 2 0 0 0 0 2 | * * * 2N * * * * * * * * | 0 1 0 1 0 0 0 0 . x x . . . | 4 | 0 2 2 0 0 0 | * * * * 2N * * * * * * * | 0 0 0 0 1 1 0 0 . x . x . . | 4 | 0 2 0 2 0 0 | * * * * * 2N * * * * * * | 0 0 0 0 0 0 1 1 . x . . x . | 4 | 0 2 0 0 2 0 | * * * * * * 2N * * * * * | 0 0 0 0 1 0 1 0 . x . . . x | 4 | 0 2 0 0 0 2 | * * * * * * * 2N * * * * | 0 0 0 0 0 1 0 1 . . x . x . | 4 | 0 0 2 0 2 0 | * * * * * * * * 2N * * * | 1 0 0 0 1 0 0 0 . . x . . x | 4 | 0 0 2 0 0 2 | * * * * * * * * * 2N * * | 0 1 0 0 0 1 0 0 . . . x x . | 4 | 0 0 0 2 2 0 | * * * * * * * * * * 2N * | 0 0 1 0 0 0 1 0 . . . x . x | 4 | 0 0 0 2 0 2 | * * * * * * * * * * * 2N | 0 0 0 1 0 0 0 1 ------------+----+-------------------+-------------------------------------+---------------- x . x . x . ♦ 8 | 4 0 4 0 4 0 | 2 0 2 0 0 0 0 0 2 0 0 0 | N * * * * * * * x . x . . x ♦ 8 | 4 0 4 0 0 4 | 2 0 0 2 0 0 0 0 0 2 0 0 | * N * * * * * * x . . x x . ♦ 8 | 4 0 0 4 4 0 | 0 2 2 0 0 0 0 0 0 0 2 0 | * * N * * * * * x . . x . x ♦ 8 | 4 0 0 4 0 4 | 0 2 0 2 0 0 0 0 0 0 0 2 | * * * N * * * * . x x . x . ♦ 8 | 0 4 4 0 4 0 | 0 0 0 0 2 0 2 0 2 0 0 0 | * * * * N * * * . x x . . x ♦ 8 | 0 4 4 0 0 4 | 0 0 0 0 2 0 0 2 0 2 0 0 | * * * * * N * * . x . x x . ♦ 8 | 0 4 0 4 4 0 | 0 0 0 0 0 2 2 0 0 0 2 0 | * * * * * * N * . x . x . x ♦ 8 | 0 4 0 4 0 4 | 0 0 0 0 0 2 0 2 0 0 0 2 | * * * * * * * N
qo3oo3oq3oo3*a&#zx (N → ∞) → height = 0 (tegum sum of 2 alternate q-octets) o.3o.3o.3o.3*a | N * ♦ 6 | 12 | 4 4 .o3.o3.o3.o3*a | * N ♦ 6 | 12 | 4 4 -------------------+-----+----+----+---- oo3oo3oo3oo3*a&#x | 1 1 | 6N | 4 | 2 2 -------------------+-----+----+----+---- qo .. oq .. &#zx | 2 2 | 4 | 6N | 1 1 -------------------+-----+----+----+---- qo3oo3oq .. &#x ♦ 4 4 | 12 | 6 | N * qo .. oq3oo3*a&#x ♦ 4 4 | 12 | 6 | * N reflecting the known fact that the primitive cubic lattice is the sum of 2 alternate fcc lattices respectively that the fcc lattice is nothing but the alternation of the primitive cubic one
:x:4:o:4:o:&##x (N → ∞) → height = 1 o 4 o 4 o | N ♦ 4 2 | 4 8 | 8 ---------------+---+------+------+-- x . . | 2 | 2N * | 2 2 | 4 :o:4:o:4:o:&#x | 2 | * N | 0 4 | 4 ---------------+---+------+------+-- x 4 o . | 4 | 4 0 | N * | 2 :x: . . &#x | 4 | 2 2 | * 2N | 2 ---------------+---+------+------+-- :x:4:o: . &#x ♦ 8 | 8 4 | 2 4 | N
:qoo:3:oqo:3:ooq:3*a&##x (N → ∞) → all heights = 1/sqrt(3) = 0.577350 o.. 3 o.. 3 o.. 3*a | N * * ♦ 3 0 3 | 3 6 3 | 3 3 2 .o. 3 .o. 3 .o. 3*a | * N * ♦ 3 3 0 | 6 3 3 | 3 2 3 ..o 3 ..o 3 ..o 3*a | * * N ♦ 0 3 3 | 3 3 6 | 2 3 3 -------------------------+-------+----------+----------+------ oo. 3 oo. 3 oo. 3*a&#x | 1 1 0 | 3N * * | 2 2 0 | 2 1 1 .oo 3 .oo 3 .oo 3*a&#x | 0 1 1 | * 3N * | 2 0 2 | 1 1 2 :o.o:3:o.o:3:o.o:3*a&#x | 1 0 1 | * * 3N | 0 2 2 | 1 2 1 -------------------------+-------+----------+----------+------ ... oqo ... &#xt | 1 2 1 | 2 2 0 | 3N * * | 1 0 1 :qoo: ... ... &#xt | 2 1 1 | 2 0 2 | * 3N * | 1 1 0 ... ... :ooq: &#xt | 1 1 2 | 0 2 2 | * * 3N | 0 1 1 -------------------------+-------+----------+----------+------ :qoo:3:oqo: ... &#xt ♦ 3 3 2 | 6 3 3 | 3 3 0 | N * * :qoo: ... :ooq:3*a&#xt ♦ 3 2 3 | 3 3 6 | 0 3 3 | * N * ... :oqo:3:ooq: &#xt ♦ 2 3 3 | 3 6 3 | 3 0 3 | * * N
© 2004-2024 | top of page |