Acronym | cube (alt: squip) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TOCID symbol | C, (4)P | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name |
cube, hexahedron, 3D measure-polytope (γ3), geochor(id), square prism, cantellated square dihedron, triangular antitegum, Voronoi cell of primitive cubical lattice, Delone cell of primitive cubical lattice, terminally chamfered tetrahedron, surtegmated tetrahedron | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|,>,O device | line prism prism = ||| | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
VRML |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt(3)/2 = 0.866025 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Edge radius | 1/sqrt(2) = 0.707107 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius | 1/2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex figure | [43] = q3o | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Snub derivation / VRML |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex layers |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
x x x x | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
o q o o q o | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates | (1/2, 1/2, 1/2) & all changes of sign | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Surface | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rel. Roundness | π/6 = 52.359878 % | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment | (is itself locally convex – no other uniform polyhedral members) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dual | oct | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dihedral angles |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 8, 12, 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
This polyhedron can be obtained as the convex hull of the 2 tet compound (so).
The number of ways to color the cube with different colors per face is 6!/24 = 30. – This is because the color group is the permutation group of 6 elements and has size 6!, while the order of the pure rotational octahedral group is 24. (The reflectional octahedral group would have twice as many, i.e. 48 elements.)
Being the dual of oct and considering that one's coordinates, it is apparent that this solid is nothing but a ball wrt. the norm max(|x|, |y|, |z|).
Incidence matrix according to Dynkin symbol
o3o4x . . . | 8 | 3 | 3 ------+---+----+-- . . x | 2 | 12 | 2 ------+---+----+-- . o4x | 4 | 4 | 6 snubbed forms: o3o4s, o3o4β
o3/2o4x . . . | 8 | 3 | 3 --------+---+----+-- . . x | 2 | 12 | 2 --------+---+----+-- . o4x | 4 | 4 | 6
x4/3o3o . . . | 8 | 3 | 3 --------+---+----+-- x . . | 2 | 12 | 2 --------+---+----+-- x4/3o . | 4 | 4 | 6
x4/3o3/2o . . . | 8 | 3 | 3 ----------+---+----+-- x . . | 2 | 12 | 2 ----------+---+----+-- x4/3o . | 4 | 4 | 6
x x4o . . . | 8 | 1 2 | 2 1 ------+---+-----+---- x . . | 2 | 4 * | 2 0 . x . | 2 | * 8 | 1 1 ------+---+-----+---- x x . | 4 | 2 2 | 4 * . x4o | 4 | 0 4 | * 2 snubbed forms: s2s4o, β2β4o
x x x . . . | 8 | 1 1 1 | 1 1 1 ------+---+-------+------ x . . | 2 | 4 * * | 1 1 0 . x . | 2 | * 4 * | 1 0 1 . . x | 2 | * * 4 | 0 1 1 ------+---+-------+------ x x . | 4 | 2 2 0 | 2 * * x . x | 4 | 2 0 2 | * 2 * . x x | 4 | 0 2 2 | * * 2 snubbed forms: s2s2s, β2β2β
x2s8o demi( . . . ) | 8 | 1 2 | 1 2 --------------+---+-----+---- demi( x . . ) | 2 | 4 * | 0 2 sefa( . s8o ) | 2 | * 8 | 1 1 --------------+---+-----+---- . s8o | 4 | 0 4 | 2 * sefa( x2s8o ) | 4 | 2 2 | * 4 starting figure: x x8o
x2s4x demi( . . . ) | 8 | 1 1 1 | 1 1 1 --------------+---+-------+------ demi( x . . ) | 2 | 4 * * | 1 1 0 demi( . . x ) | 2 | * 4 * | 1 0 1 sefa( . s4x ) | 2 | * * 4 | 0 1 1 --------------+---+-------+------ demi( x . x ) | 4 | 2 2 0 | 2 * * . s4x | 4 | 2 0 2 | * 2 * sefa( x2s4x ) | 4 | 0 2 2 | * * 2 starting figure: x x4x
x2s4s demi( . . . ) | 8 | 1 2 | 1 2 --------------+---+-----+---- demi( x . . ) | 2 | 4 * | 0 2 sefa( . s4s ) | 2 | * 8 | 1 1 --------------+---+-----+---- . s4s | 4 | 0 4 | 2 * sefa( x2s4s ) | 4 | 2 2 | * 4 starting figure: x x4x
s2s4x demi( . . . ) | 8 | 1 1 1 | 1 2 --------------+---+-------+---- demi( . . x ) | 2 | 4 * * | 1 1 s2s . | 2 | * 4 * | 0 2 sefa( . s4x ) | 2 | * * 4 | 1 1 --------------+---+-------+---- . s4x | 4 | 2 0 2 | 2 * sefa( s2s4x ) | 4 | 1 2 1 | * 4 starting figure: x x4x
xx4oo&#x → height = 1
({4} || {4})
o.4o. | 4 * | 2 1 0 | 1 2 0
.o4.o | * 4 | 0 1 2 | 0 2 1
---------+-----+-------+------
x. .. | 2 0 | 4 * * | 1 1 0
oo4oo&#x | 1 1 | * 4 * | 0 2 0
.x .. | 0 2 | * * 4 | 0 1 1
---------+-----+-------+------
x.4o. | 4 0 | 4 0 0 | 1 * *
xx ..&#x | 2 2 | 1 2 1 | * 4 *
.x4.o | 0 4 | 0 0 4 | * * 1
xx xx&#x → height = 1
({4} || {4})
o. o. | 4 * | 1 1 1 0 0 | 1 1 1 0
.o .o | * 4 | 0 0 1 1 1 | 0 1 1 1
---------+-----+-----------+--------
x. .. | 2 0 | 2 * * * * | 1 1 0 0
.. x. | 2 0 | * 2 * * * | 1 0 1 0
oo oo&#x | 1 1 | * * 4 * * | 0 1 1 0
.x .. | 0 2 | * * * 2 * | 0 1 0 1
.. .x | 0 2 | * * * * 2 | 0 0 1 1
---------+-----+-----------+--------
x. x. | 4 0 | 2 2 0 0 0 | 1 * * *
xx ..&#x | 2 2 | 1 0 2 1 0 | * 2 * *
.. xx&#x | 2 2 | 0 1 2 0 1 | * * 2 *
.x .x | 0 4 | 0 0 0 2 2 | * * * 1
oqoo3ooqo&#xt → all heights = 1/sqrt(3) = 0.577350 (pt || pseudo q-{3} || pseudo dual q-{3} || pt) o...3o... | 1 * * * | 3 0 0 | 3 0 .o..3.o.. | * 3 * * | 1 2 0 | 2 1 ..o.3..o. | * * 3 * | 0 2 1 | 1 2 ...o3...o | * * * 1 | 0 0 3 | 0 3 --------------+---------+-------+---- oo..3oo..&#x | 1 1 0 0 | 3 * * | 2 0 .oo.3.oo.&#x | 0 1 1 0 | * 6 * | 1 1 ..oo3..oo&#x | 0 0 1 1 | * * 3 | 0 2 --------------+---------+-------+---- oqo. ....&#xt | 1 2 1 0 | 2 2 0 | 3 * .... .oqo&#xt | 0 1 2 1 | 0 2 2 | * 3
or o...3o... & | 2 * | 3 0 | 3 .o..3.o.. & | * 6 | 1 2 | 3 -----------------+-----+-----+-- oo..3oo..&#x & | 1 1 | 6 * | 2 .oo.3.oo.&#x | 0 2 | * 6 | 2 -----------------+-----+-----+-- oqo. ....&#xt & | 1 3 | 2 2 | 6
xxx oqo&#xt → both heights = 1/sqrt(2) = 0.707107 (line || pseudo (x,q)-{4} || line) o.. o.. | 2 * * | 1 2 0 0 0 | 2 1 0 .o. .o. | * 4 * | 0 1 1 1 0 | 1 1 1 ..o ..o | * * 2 | 0 0 0 2 1 | 0 1 2 ------------+-------+-----------+------ x.. ... | 2 0 0 | 1 * * * * | 2 0 0 oo. oo.&#x | 1 1 0 | * 4 * * * | 1 1 0 .x. ... | 0 2 0 | * * 2 * * | 1 0 1 .oo .oo&#x | 0 1 1 | * * * 4 * | 0 1 1 ..x ... | 0 0 2 | * * * * 1 | 0 0 2 ------------+-------+-----------+------ xx. ...&#x | 2 2 0 | 1 2 1 0 0 | 2 * * ... oqo&#xt | 1 2 1 | 0 2 0 2 0 | * 2 * .xx ...&#x | 0 2 2 | 0 0 1 2 1 | * * 2
or o.. o.. & | 4 * | 1 2 0 | 2 1 .o. .o. | * 4 | 0 2 1 | 2 1 ---------------+-----+-------+---- x.. ... & | 2 0 | 2 * * | 2 0 oo. oo.&#x & | 1 1 | * 8 * | 1 1 .x. ... | 0 2 | * * 2 | 2 0 ---------------+-----+-------+---- xx. ...&#x & | 2 2 | 1 2 1 | 4 * ... oqo&#xt | 2 2 | 0 4 0 | * 2
oqooqo&#xt → height(1,2) = height(5,6) = 1/2 height(2,3) = height(4,5) = (sqrt(2)-1)/2 = 0.207107 height(3,4) = (2-sqrt(2))/2 = 0.292893 (pt || pseudo q-line || pt || pt || pseudo q-line || pt) o..... | 1 * * * * * | 2 1 0 0 0 0 0 | 1 2 0 0 .o.... | * 2 * * * * | 1 0 1 1 0 0 0 | 1 1 1 0 ..o... | * * 1 * * * | 0 1 0 0 2 0 0 | 0 2 0 1 ...o.. | * * * 1 * * | 0 0 2 0 0 1 0 | 1 0 2 0 ....o. | * * * * 2 * | 0 0 0 1 1 0 1 | 0 1 1 1 .....o | * * * * * 1 | 0 0 0 0 0 1 2 | 0 0 2 1 -----------+-------------+---------------+-------- oo....&#x | 1 1 0 0 0 0 | 2 * * * * * * | 1 1 0 0 o.o...&#x | 1 0 1 0 0 0 | * 1 * * * * * | 0 2 0 0 .o.o..&#x | 0 1 0 1 0 0 | * * 2 * * * * | 1 0 1 0 .o..o.&#x | 0 1 0 0 1 0 | * * * 2 * * * | 0 1 1 0 ..o.o.&#x | 0 0 1 0 1 0 | * * * * 2 * * | 0 1 0 1 ...o.o&#x | 0 0 0 1 0 1 | * * * * * 1 * | 0 0 2 0 ....oo&#x | 0 0 0 0 1 1 | * * * * * * 2 | 0 0 1 1 -----------+-------------+---------------+-------- oq.o..&#xt | 1 2 0 1 0 0 | 2 0 2 0 0 0 0 | 1 * * * ooo.o.&#xt | 1 1 1 0 1 0 | 1 1 0 1 1 0 0 | * 2 * * .o.ooo&#xt | 0 1 0 1 1 1 | 0 0 1 1 0 1 1 | * * 2 * ..o.qo&#xt | 0 0 1 0 2 1 | 0 0 0 0 2 0 2 | * * * 1
or o..... & | 2 * * | 2 1 0 0 | 1 2 .o.... & | * 4 * | 1 0 1 1 | 1 2 ..o... & | * * 2 | 0 1 2 0 | 1 2 --------------+-------+---------+---- oo....&#x & | 1 1 0 | 4 * * * | 1 1 o.o...&#x & | 1 0 1 | * 2 * * | 0 2 .o.o..&#x & | 0 1 1 | * * 4 * | 1 1 .o..o.&#x | 0 2 0 | * * * 2 | 0 2 --------------+-------+---------+---- oq.o..&#xt & | 1 2 1 | 2 0 2 0 | 2 * ooo.o.&#xt & | 1 2 1 | 1 1 1 1 | * 4
qo3oo3oq&#zx → height = 0 (tegum sum of 2 dual q-tets) o.3o.3o. | 4 * | 3 | 3 .o3.o3.o | * 4 | 3 | 3 -------------+-----+----+-- oo3oo3oo&#x | 1 1 | 12 | 2 -------------+-----+----+-- qo .. oq&#zx | 2 2 | 4 | 6
or o.3o.3o. & | 8 | 3 | 3 -------------+---+----+-- oo3oo3oo&#x | 2 | 12 | 2 -------------+---+----+-- qo .. oq&#zx | 4 | 4 | 6
© 2004-2025 | top of page |