Acronym | squapen |
Name |
square-pentachoron duoprism, vertex figure of bersa |
|,>,O device | line pyramid pyramid pyramid prism prism = |>>>|| |
Circumradius | sqrt(9/10) = 0.948683 |
Volume | sqrt(5)/96 = 0.023292 |
Dihedral angles | |
Face vector | 20, 60, 85, 70, 34, 9 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x4o x3o3o3o . . . . . . | 20 | 2 4 | 1 8 6 | 4 12 4 | 6 8 1 | 4 2 ------------+----+-------+---------+----------+---------+---- x . . . . . | 2 | 20 * | 1 4 0 | 4 6 0 | 6 4 0 | 4 1 . . x . . . | 2 | * 40 | 0 2 3 | 1 6 3 | 3 6 1 | 3 2 ------------+----+-------+---------+----------+---------+---- x4o . . . . | 4 | 4 0 | 5 * * ♦ 4 0 0 | 6 0 0 | 4 0 x . x . . . | 4 | 2 2 | * 40 * | 1 3 0 | 3 3 0 | 3 1 . . x3o . . | 3 | 0 3 | * * 40 | 0 2 2 | 1 4 1 | 2 2 ------------+----+-------+---------+----------+---------+---- x4o x . . . ♦ 8 | 8 4 | 2 4 0 | 10 * * | 3 0 0 | 3 0 x . x3o . . ♦ 6 | 3 6 | 0 3 2 | * 40 * | 1 2 0 | 2 1 . . x3o3o . ♦ 4 | 0 6 | 0 0 4 | * * 20 | 0 2 1 | 1 2 ------------+----+-------+---------+----------+---------+---- x4o x3o . . ♦ 12 | 12 12 | 3 12 4 | 3 4 0 | 10 * * | 2 0 x . x3o3o . ♦ 8 | 4 12 | 0 6 8 | 0 4 2 | * 20 * | 1 1 . . x3o3o3o ♦ 5 | 0 10 | 0 0 10 | 0 0 5 | * * 4 | 0 2 ------------+----+-------+---------+----------+---------+---- x4o x3o3o . ♦ 16 | 16 24 | 4 24 16 | 6 16 4 | 4 4 0 | 5 * x . x3o3o3o ♦ 10 | 5 20 | 0 10 20 | 0 10 10 | 0 5 2 | * 4
x x x3o3o3o . . . . . . | 20 | 1 1 4 | 1 4 4 6 | 4 6 6 4 | 6 4 4 1 | 4 1 1 ------------+----+----------+------------+-------------+------------+------ x . . . . . | 2 | 10 * * | 1 4 0 0 | 4 6 0 0 | 6 4 0 0 | 4 1 0 . x . . . . | 2 | * 10 * | 1 0 4 0 | 4 0 6 0 | 6 0 4 0 | 4 0 1 . . x . . . | 2 | * * 40 | 0 1 1 3 | 1 3 3 3 | 3 3 3 1 | 3 1 1 ------------+----+----------+------------+-------------+------------+------ x x . . . . | 4 | 2 2 0 | 5 * * * ♦ 4 0 0 0 | 6 0 0 0 | 4 0 0 x . x . . . | 4 | 2 0 2 | * 20 * * | 1 3 0 0 | 3 3 0 0 | 3 1 0 . x x . . . | 4 | 0 2 2 | * * 20 * | 1 0 3 0 | 3 0 3 0 | 3 0 1 . . x3o . . | 3 | 0 0 3 | * * * 40 | 0 1 1 2 | 1 2 2 1 | 2 1 1 ------------+----+----------+------------+-------------+------------+------ x x x . . . ♦ 8 | 4 4 4 | 2 2 2 0 | 10 * * * | 3 0 0 0 | 3 0 0 x . x3o . . ♦ 6 | 3 0 6 | 0 3 0 2 | * 20 * * | 1 2 0 0 | 2 1 0 . x x3o . . ♦ 6 | 0 3 6 | 0 0 3 2 | * * 20 * | 1 0 2 0 | 2 0 1 . . x3o3o . ♦ 4 | 0 0 6 | 0 0 0 4 | * * * 20 | 0 1 1 1 | 1 1 1 ------------+----+----------+------------+-------------+------------+------ x x x3o . . ♦ 12 | 6 6 12 | 3 6 6 4 | 3 2 2 0 | 10 * * * | 2 0 0 x . x3o3o . ♦ 8 | 4 0 12 | 0 6 0 8 | 0 4 0 2 | * 10 * * | 1 1 0 . x x3o3o . ♦ 8 | 0 4 12 | 0 0 6 8 | 0 0 4 2 | * * 10 * | 1 0 1 . . x3o3o3o ♦ 5 | 0 0 10 | 0 0 0 10 | 0 0 0 5 | * * * 4 | 0 1 1 ------------+----+----------+------------+-------------+------------+------ x x x3o3o . ♦ 16 | 8 8 24 | 4 12 12 16 | 6 8 8 4 | 4 2 2 0 | 5 * * x . x3o3o3o ♦ 10 | 5 0 20 | 0 10 0 20 | 0 10 0 10 | 0 5 0 2 | * 2 * . x x3o3o3o ♦ 10 | 0 5 20 | 0 0 10 20 | 0 0 10 10 | 0 0 5 2 | * * 2
xx xx3oo3oo3oo&#x → height = 1 (penp || penp) o. o.3o.3o.3o. & | 20 | 1 4 1 | 4 6 1 4 | 6 4 4 6 | 4 1 6 4 | 1 4 1 --------------------+----+----------+------------+-------------+------------+------ x. .. .. .. .. & | 2 | 10 * * | 4 0 1 0 | 6 0 4 0 | 4 0 6 0 | 1 4 0 .. x. .. .. .. & | 2 | * 40 * | 1 3 0 1 | 3 3 1 3 | 3 1 3 3 | 1 3 1 oo oo3oo3oo3oo&#x | 2 | * * 10 | 0 0 1 4 | 0 0 4 6 | 0 0 6 4 | 0 4 1 --------------------+----+----------+------------+-------------+------------+------ x. x. .. .. .. & | 4 | 2 2 0 | 20 * * * | 3 0 1 0 | 3 0 3 0 | 1 3 0 .. x.3o. .. .. & | 3 | 0 3 0 | * 40 * * | 1 2 0 1 | 2 1 1 2 | 1 2 1 xx .. .. .. ..&#x | 4 | 2 0 2 | * * 5 * ♦ 0 0 4 0 | 0 0 6 0 | 0 4 0 .. xx .. .. ..&#x | 4 | 0 2 2 | * * * 20 | 0 0 1 3 | 0 0 3 3 | 0 3 1 --------------------+----+----------+------------+-------------+------------+------ x. x.3o. .. .. & ♦ 6 | 3 6 0 | 3 2 0 0 | 20 * * * | 2 0 1 0 | 1 2 0 .. x.3o.3o. .. & ♦ 4 | 0 6 0 | 0 4 0 0 | * 20 * * | 1 1 0 1 | 1 1 1 xx xx .. .. ..&#x ♦ 8 | 4 4 4 | 2 0 2 2 | * * 10 * | 0 0 3 0 | 0 3 0 .. xx3oo .. ..&#x ♦ 6 | 0 6 3 | 0 2 0 3 | * * * 20 | 0 0 1 2 | 0 2 1 --------------------+----+----------+------------+-------------+------------+------ x. x.3o.3o. .. & ♦ 8 | 4 12 0 | 6 8 0 0 | 4 2 0 0 | 10 * * * | 1 1 0 .. x.3o.3o.3o. & ♦ 5 | 0 10 0 | 0 10 0 0 | 0 5 0 0 | * 4 * * | 1 0 1 xx xx3oo .. ..&#x ♦ 12 | 6 12 6 | 6 4 3 6 | 2 0 3 2 | * * 10 * | 0 2 0 .. xx3oo3oo ..&#x ♦ 8 | 0 12 4 | 0 8 0 6 | 0 2 0 4 | * * * 10 | 0 1 1 --------------------+----+----------+------------+-------------+------------+------ x. x.3o.3o.3o. & ♦ 10 | 5 20 0 | 10 20 0 0 | 10 10 0 0 | 5 2 0 0 | 2 * * xx xx3oo3oo ..&#x ♦ 16 | 8 24 8 | 12 16 4 12 | 8 4 6 8 | 2 0 4 2 | * 5 * .. xx3oo3oo3oo&#x ♦ 10 | 0 20 5 | 0 20 0 10 | 0 10 0 10 | 0 2 0 5 | * * 2
xx4oo ox3oo3oo&#x → height = sqrt(5/8) = 0.790569
({4} || squatet)
o.4o. o.3o.3o. | 4 * | 2 4 0 0 | 1 8 6 0 0 0 | 4 12 4 0 0 0 | 6 8 1 0 0 | 4 2 0
.o4.o .o3.o3.o | * 16 | 0 1 2 3 | 0 2 3 1 6 3 | 1 6 3 3 6 1 | 3 6 1 3 2 | 3 2 1
------------------+------+------------+-----------------+----------------+------------+------
x. .. .. .. .. | 2 0 | 4 * * * | 1 4 0 0 0 0 | 4 6 0 0 0 0 | 6 4 0 0 0 | 4 1 0
oo4oo oo3oo3oo&#x | 1 1 | * 16 * * | 0 2 3 0 0 0 | 1 6 3 0 0 0 | 3 6 1 0 0 | 3 2 0
.x .. .. .. .. | 0 2 | * * 16 * | 0 1 0 1 3 0 | 1 3 0 3 3 0 | 3 3 0 3 1 | 3 1 1
.. .. .x .. .. | 0 2 | * * * 24 | 0 0 1 0 2 2 | 0 2 2 1 4 1 | 1 4 1 2 2 | 2 2 1
------------------+------+------------+-----------------+----------------+------------+------
x.4o. .. .. .. | 4 0 | 4 0 0 0 | 1 * * * * * ♦ 4 0 0 0 0 0 | 6 0 0 0 0 | 4 0 0
xx .. .. .. ..&#x | 2 2 | 1 2 1 0 | * 16 * * * * | 1 3 0 0 0 0 | 3 3 0 0 0 | 3 1 0
.. .. ox .. ..&#x | 1 2 | 0 2 0 1 | * * 24 * * * | 0 2 2 0 0 0 | 1 4 1 0 0 | 2 2 0
.x4.o .. .. .. | 0 4 | 0 0 4 0 | * * * 4 * * ♦ 1 0 0 3 0 0 | 3 0 0 3 0 | 3 0 1
.x .. .x .. .. | 0 4 | 0 0 2 2 | * * * * 24 * | 0 1 0 1 2 0 | 1 2 0 2 1 | 2 1 1
.. .. .x3.o .. | 0 3 | 0 0 0 3 | * * * * * 16 | 0 0 1 0 2 1 | 0 2 1 1 2 | 1 2 1
------------------+------+------------+-----------------+----------------+------------+------
xx4oo .. .. ..&#x ♦ 4 4 | 4 4 4 0 | 1 4 0 1 0 0 | 4 * * * * * | 3 0 0 0 0 | 3 0 0
xx .. ox .. ..&#x ♦ 2 4 | 1 4 2 2 | 0 2 2 0 1 0 | * 24 * * * * | 1 2 0 0 0 | 1 2 0
.. .. ox3oo ..&#x ♦ 1 3 | 0 3 0 3 | 0 0 3 0 0 1 | * * 16 * * * | 0 2 1 0 0 | 1 2 0
.x4.o .x .. .. ♦ 0 8 | 0 0 8 4 | 0 0 0 2 4 0 | * * * 6 * * | 1 0 0 2 0 | 2 0 1
.x .. .x3.o .. ♦ 0 6 | 0 0 3 6 | 0 0 0 0 3 2 | * * * * 16 * | 0 1 0 1 1 | 1 1 1
.. .. .x3.o3.o ♦ 0 4 | 0 0 0 6 | 0 0 0 0 0 4 | * * * * * 4 | 0 0 1 0 2 | 0 2 1
------------------+------+------------+-----------------+----------------+------------+------
xx4oo ox .. ..&#x ♦ 4 8 | 4 8 8 4 | 1 8 4 2 4 0 | 2 4 0 1 0 0 | 6 * * * * | 2 0 0
xx .. ox3oo ..&#x ♦ 2 6 | 1 6 3 6 | 0 3 6 0 3 2 | 0 3 2 0 1 0 | * 16 * * * | 1 1 0
.. .. ox3oo3oo&#x ♦ 1 4 | 0 4 0 6 | 0 0 6 0 0 4 | 0 0 4 0 0 1 | * * 4 * * | 0 2 0
.x4.o .x3.o .. ♦ 0 12 | 0 0 12 12 | 0 0 0 3 12 4 | 0 0 0 3 4 0 | * * * 4 * | 1 0 1
.x .. .x3.o3.o ♦ 0 8 | 0 0 4 12 | 0 0 0 0 6 8 | 0 0 0 0 4 2 | * * * * 4 | 0 1 1
------------------+------+------------+-----------------+----------------+------------+------
xx4oo ox3oo ..&#x ♦ 4 12 | 4 12 12 12 | 1 12 12 3 12 4 | 3 12 4 3 4 0 | 3 4 0 1 0 | 4 * *
xx .. ox3oo3oo&#x ♦ 2 8 | 1 8 4 12 | 0 4 12 0 6 8 | 0 6 8 0 4 2 | 0 4 2 0 1 | * 4 *
.x4.o .x3.o3.o ♦ 0 16 | 0 0 16 24 | 0 0 0 4 24 16 | 0 0 0 6 16 4 | 0 0 0 4 4 | * * 1
© 2004-2025 | top of page |