Acronym triphix
Name triangle - hexateron duoprismatic prism,
vertex figure of ribfoh
Circumradius 1
Volume 1/640 = 0.0015625
Face vector 36, 144, 285, 351, 286, 155, 54, 11
Confer
general polytopal classes:
Wythoffian polyzetta   segmentozetta  

Incidence matrix according to Dynkin symbol

x x3o x3o3o3o3o

. . . . . . . . | 36 |  1  2  5 |  2  5  1 10  10 | 1 10 10  5  20 10 |  5 20 10 10 20  5 | 10 20  5 10 10 1 | 10 10 1  5 2 | 5 2 1
----------------+----+----------+-----------------+-------------------+-------------------+------------------+--------------+------
x . . . . . . . |  2 | 18  *  * |  2  5  0  0   0 | 1 10 10  0   0  0 |  5 20 10  0  0  0 | 10 20  5  0  0 0 | 10 10 1  0 0 | 5 2 0
. x . . . . . . |  2 |  * 36  * |  1  0  1  5   0 | 1  5  0  5  10  0 |  5 10  0 10 10  0 | 10 10  0 10  5 0 | 10  5 0  5 1 | 5 1 1
. . . x . . . . |  2 |  *  * 90 |  0  1  0  2   4 | 0  2  4  1   8  6 |  1  8  6  4 12  4 |  4 12  4  6  8 1 |  6  8 1  4 2 | 4 2 1
----------------+----+----------+-----------------+-------------------+-------------------+------------------+--------------+------
x x . . . . . . |  4 |  2  2  0 | 18  *  *  *   * | 1  5  0  0   0  0 |  5 10  0  0  0  0 | 10 10  0  0  0 0 | 10  5 0  0 0 | 5 1 0
x . . x . . . . |  4 |  2  0  2 |  * 45  *  *   * | 0  2  4  0   0  0 |  1  8  6  0  0  0 |  4 12  4  0  0 0 |  6  8 1  0 0 | 4 2 0
. x3o . . . . . |  3 |  0  3  0 |  *  * 12  *   * | 1  0  0  5   0  0 |  5  0  0 10  0  0 | 10  0  0 10  0 0 | 10  0 0  5 0 | 5 0 1
. x . x . . . . |  4 |  0  2  2 |  *  *  * 90   * | 0  1  0  1   4  0 |  1  4  0  4  6  0 |  4  6  0  6  4 0 |  6  4 0  4 1 | 4 1 1
. . . x3o . . . |  3 |  0  0  3 |  *  *  *  * 120 | 0  0  1  0   2  3 |  0  2  3  1  6  3 |  1  6  3  3  6 1 |  3  6 1  3 2 | 3 2 1
----------------+----+----------+-----------------+-------------------+-------------------+------------------+--------------+------
x x3o . . . . .   6 |  3  6  0 |  3  0  2  0   0 | 6  *  *  *   *  *   5  0  0  0  0  0 | 10  0  0  0  0 0 | 10  0 0  0 0 | 5 0 0
x x . x . . . .   8 |  4  4  4 |  2  2  0  2   0 | * 45  *  *   *  * |  1  4  0  0  0  0 |  4  6  0  0  0 0 |  6  4 0  0 0 | 4 1 0
x . . x3o . . .   6 |  3  0  6 |  0  3  0  0   2 | *  * 60  *   *  * |  0  2  3  0  0  0 |  1  6  3  0  0 0 |  3  6 1  0 0 | 3 2 0
. x3o x . . . .   6 |  0  6  3 |  0  0  2  3   0 | *  *  * 30   *  * |  1  0  0  4  0  0 |  4  0  0  6  0 0 |  6  0 0  4 0 | 4 0 1
. x . x3o . . .   6 |  0  3  6 |  0  0  0  3   2 | *  *  *  * 120  * |  0  1  0  1  3  0 |  1  3  0  3  3 0 |  3  3 0  3 1 | 3 1 1
. . . x3o3o . .   4 |  0  0  6 |  0  0  0  0   4 | *  *  *  *   * 90 |  0  0  1  0  2  2 |  0  2  2  1  4 1 |  1  4 1  2 2 | 2 2 1
----------------+----+----------+-----------------+-------------------+-------------------+------------------+--------------+------
x x3o x . . . .  12 |  6 12  6 |  6  3  4  6   0 | 2  3  0  2   0  0 | 15  *  *  *  *  *   4  0  0  0  0 0 |  6  0 0  0 0 | 4 0 0
x x . x3o . . .  12 |  6  6 12 |  3  6  0  6   4 | 0  3  2  0   2  0 |  * 60  *  *  *  * |  1  3  0  0  0 0 |  3  3 0  0 0 | 3 1 0
x . . x3o3o . .   8 |  4  0 12 |  0  6  0  0   8 | 0  0  4  0   0  2 |  *  * 45  *  *  * |  0  2  2  0  0 0 |  1  4 1  0 0 | 2 2 0
. x3o x3o . . .   9 |  0  9  9 |  0  0  3  9   3 | 0  0  0  3   3  0 |  *  *  * 40  *  * |  1  0  0  3  0 0 |  3  0 0  3 0 | 3 0 1
. x . x3o3o . .   8 |  0  4 12 |  0  0  0  6   8 | 0  0  0  0   4  2 |  *  *  *  * 90  * |  0  1  0  1  2 0 |  1  2 0  2 1 | 2 1 1
. . . x3o3o3o .   5 |  0  0 10 |  0  0  0  0  10 | 0  0  0  0   0  5 |  *  *  *  *  * 36 |  0  0  1  0  2 1 |  0  2 1  1 2 | 1 2 1
----------------+----+----------+-----------------+-------------------+-------------------+------------------+--------------+------
x x3o x3o . . .  18 |  9 18 18 |  9  9  6 18   6 | 3  9  3  6   6  0 |  3  3  0  2  0  0 | 20  *  *  *  * * |  3  0 0  0 0 | 3 0 0
x x . x3o3o . .  16 |  8  8 24 |  4 12  0 12  16 | 0  6  8  0   8  4 |  0  4  2  0  2  0 |  * 45  *  *  * * |  1  2 0  0 0 | 2 1 0
x . . x3o3o3o .  10 |  5  0 20 |  0 10  0  0  20 | 0  0 10  0   0 10 |  0  0  5  0  0  2 |  *  * 18  *  * * |  0  2 1  0 0 | 1 2 0
. x3o x3o3o . .  12 |  0 12 18 |  0  0  4 18  12 | 0  0  0  6  12  3 |  0  0  0  4  3  0 |  *  *  * 30  * * |  1  0 0  2 0 | 2 0 1
. x . x3o3o3o .  10 |  0  5 20 |  0  0  0 10  20 | 0  0  0  0  10 10 |  0  0  0  0  5  2 |  *  *  *  * 36 * |  0  1 0  1 1 | 1 1 1
. . . x3o3o3o3o   6 |  0  0 15 |  0  0  0  0  20 | 0  0  0  0   0 15 |  0  0  0  0  0  6 |  *  *  *  *  * 6 |  0  0 1  0 2 | 0 2 1
----------------+----+----------+-----------------+-------------------+-------------------+------------------+--------------+------
x x3o x3o3o . .  24 | 12 24 36 | 12 18  8 36  24 | 4 18 12 12  24  6 |  6 12  3  8  6  0 |  4  3  0  2  0 0 | 15  * *  * * | 2 0 0
x x . x3o3o3o .  20 | 10 10 40 |  5 20  0 20  40 | 0 10 20  0  20 20 |  0 10 10  0 10  4 |  0  5  2  0  2 0 |  * 18 *  * * | 1 1 0
x . . x3o3o3o3o  12 |  6  0 30 |  0 15  0  0  40 | 0  0 20  0   0 30 |  0  0 15  0  0 12 |  0  0  6  0  0 2 |  *  * 3  * * | 0 2 0
. x3o x3o3o3o .  15 |  0 15 30 |  0  0  5 30  30 | 0  0  0 10  30 15 |  0  0  0 10 15  3 |  0  0  0  5  3 0 |  *  * * 12 * | 1 0 1
. x . x3o3o3o3o  12 |  0  6 30 |  0  0  0 15  40 | 0  0  0  0  20 30 |  0  0  0  0 15 12 |  0  0  0  0  6 2 |  *  * *  * 6 | 0 1 1
----------------+----+----------+-----------------+-------------------+-------------------+------------------+--------------+------
x x3o x3o3o3o .  30 | 15 30 60 | 15 30 10 60  60 | 5 30 30 20  60 30 | 10 30 15 20 30  6 | 10 15  3 10  6 0 |  5  3 0  2 0 | 6 * *
x x . x3o3o3o3o  24 | 12 12 60 |  6 30  0 30  80 | 0 15 40  0  40 60 |  0 20 30  0 30 24 |  0 15 12  0 12 4 |  0  6 2  0 2 | * 3 *
. x3o x3o3o3o3o  18 |  0 18 45 |  0  0  6 45  60 | 0  0  0 15  60 45 |  0  0  0 20 45 18 |  0  0  0 15 18 3 |  0  0 0  6 3 | * * 2

© 2004-2025
top of page