Acronym | nit | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name |
penteractitriacontiditeron, birectified penteract, birectified triacontiditeron, birectified pentacross, Gosset polytope 02,1,1, equatorial cross-section of rat-first brag | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Field of sections |
© | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt(3/2) = 1.224745 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. rap | 3/sqrt(10) = 0.948683 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. ico | 1/sqrt(2) = 0.707107 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex figure |
© © | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
o3x3o x3o3x o3x3o -- o3x3o4o (ico) x3o3o x3x3o o3x3x o3o3x -- o3o3x4o (rit) o3x3o x3o3x o3x3o -- o3x3o4o (ico) \ \ \ \ \ \ \ +-- o3x3o3o (rap) \ \ +------- x3o3x3o (srip) \ +------------ o3x3o3x (inv. srip) +----------------- o3o3x3o (inv. rap) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lace hyper city in approx. ASCII-art |
o3x x3o x3o x3x o3x o3x x3o o3o o3x o3x o3u x3x x3x u3o x3o x3o o3o o3x x3o x3o x3x o3x o3x x3o(left to right -or- top to bottom: ico || rit || ico) (upper-left front to lower-right back: rap || srip || inv. srip || inv. rap) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates | (1/sqrt(2), 1/sqrt(2), 1/sqrt(2), 0, 0) & all permutations, all changes of sign | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume | 31 sqrt(2)/10 = 4.384062 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Surface | [60+11 sqrt(5)]/3 = 28.198916 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dihedral angles
(at margins) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 80, 480, 640, 280, 42 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
Incidence matrix according to Dynkin symbol
o3o3x3o4o . . . . . | 80 ♦ 12 | 12 12 | 4 12 3 | 4 3 ----------+----+-----+---------+-----------+------ . . x . . | 2 | 480 | 2 2 | 1 4 1 | 2 2 ----------+----+-----+---------+-----------+------ . o3x . . | 3 | 3 | 320 * | 1 2 0 | 2 1 . . x3o . | 3 | 3 | * 320 | 0 2 1 | 1 2 ----------+----+-----+---------+-----------+------ o3o3x . . ♦ 4 | 6 | 4 0 | 80 * * | 2 0 . o3x3o . ♦ 6 | 12 | 4 4 | * 160 * | 1 1 . . x3o4o ♦ 6 | 12 | 0 8 | * * 40 | 0 2 ----------+----+-----+---------+-----------+------ o3o3x3o . ♦ 10 | 30 | 20 10 | 5 5 0 | 32 * . o3x3o4o ♦ 24 | 96 | 32 64 | 0 16 8 | * 10
o3o3x3o4/3o . . . . . | 80 ♦ 12 | 12 12 | 4 12 3 | 4 3 ------------+----+-----+---------+-----------+------ . . x . . | 2 | 480 | 2 2 | 1 4 1 | 2 2 ------------+----+-----+---------+-----------+------ . o3x . . | 3 | 3 | 320 * | 1 2 0 | 2 1 . . x3o . | 3 | 3 | * 320 | 0 2 1 | 1 2 ------------+----+-----+---------+-----------+------ o3o3x . . ♦ 4 | 6 | 4 0 | 80 * * | 2 0 . o3x3o . ♦ 6 | 12 | 4 4 | * 160 * | 1 1 . . x3o4/3o ♦ 6 | 12 | 0 8 | * * 40 | 0 2 ------------+----+-----+---------+-----------+------ o3o3x3o . ♦ 10 | 30 | 20 10 | 5 5 0 | 32 * . o3x3o4/3o ♦ 24 | 96 | 32 64 | 0 16 8 | * 10
o3x3o *b3o3o . . . . . | 80 ♦ 12 | 6 6 12 | 3 6 6 4 | 3 2 2 -------------+----+-----+-------------+-------------+--------- . x . . . | 2 | 480 | 1 1 2 | 1 2 2 1 | 2 1 1 -------------+----+-----+-------------+-------------+--------- o3x . . . | 3 | 3 | 160 * * | 1 2 0 0 | 2 1 0 . x3o . . | 3 | 3 | * 160 * | 1 0 2 0 | 2 0 1 . x . *b3o . | 3 | 3 | * * 320 | 0 1 1 1 | 1 1 1 -------------+----+-----+-------------+-------------+--------- o3x3o . . ♦ 6 | 12 | 4 4 0 | 40 * * * | 2 0 0 o3x . *b3o . ♦ 6 | 12 | 4 0 4 | * 80 * * | 1 1 0 . x3o *b3o . ♦ 6 | 12 | 0 4 4 | * * 80 * | 1 0 1 . x . *b3o3o ♦ 4 | 6 | 0 0 4 | * * * 80 | 0 1 1 -------------+----+-----+-------------+-------------+--------- o3x3o *b3o . ♦ 24 | 96 | 32 32 32 | 8 8 8 0 | 10 * * o3x . *b3o3o ♦ 10 | 30 | 10 0 20 | 0 5 0 5 | * 16 * . x3o *b3o3o ♦ 10 | 30 | 0 10 20 | 0 0 5 5 | * * 16
ooo3xox3oxo4ooo&#xt → both heights = 1/sqrt(2) = 0.707107 (ico || pseudo rit || ico) o..3o..3o..4o.. & | 48 * ♦ 8 4 0 | 4 8 8 4 0 | 4 2 4 8 1 0 | 1 4 2 .o.3.o.3.o.4.o. | * 32 ♦ 0 6 6 | 0 0 6 12 6 | 0 0 2 12 3 2 | 0 4 3 ----------------------+-------+------------+-------------------+--------------------+------- ... x.. ... ... & | 2 0 | 192 * * | 1 2 1 0 0 | 2 1 1 2 0 0 | 1 2 1 oo.3oo.3oo.4oo.&#x & | 1 1 | * 192 * | 0 0 2 2 0 | 0 0 1 4 1 0 | 0 2 2 ... ... .x. ... | 0 2 | * * 96 | 0 0 0 2 2 | 0 0 0 4 1 1 | 0 2 2 ----------------------+-------+------------+-------------------+--------------------+------- o..3x.. ... ... & | 3 0 | 3 0 0 | 64 * * * * | 2 0 1 0 0 0 | 1 2 0 ... x..3o.. ... & | 3 0 | 3 0 0 | * 128 * * * | 1 1 0 1 0 0 | 1 1 1 ... xo. ... ...&#x & | 2 1 | 1 2 0 | * * 192 * * | 0 0 1 2 0 0 | 0 2 1 ... ... ox. ...&#x & | 1 2 | 0 2 1 | * * * 192 * | 0 0 0 2 1 0 | 0 1 2 ... .o.3.x. ... | 0 3 | 0 0 3 | * * * * 64 | 0 0 0 2 0 1 | 0 2 1 ----------------------+-------+------------+-------------------+--------------------+------- o..3x..3o.. ... & ♦ 6 0 | 12 0 0 | 4 4 0 0 0 | 32 * * * * * | 1 1 0 ... x..3o..4o.. & ♦ 6 0 | 12 0 0 | 0 8 0 0 0 | * 16 * * * * | 1 0 1 oo.3xo. ... ...&#x & ♦ 3 1 | 3 3 0 | 1 0 3 0 0 | * * 64 * * * | 0 2 0 ... xo.3ox. ...&#x & ♦ 3 3 | 3 6 3 | 0 1 3 3 1 | * * * 128 * * | 0 1 1 ... ... oxo4ooo&#xt ♦ 2 4 | 0 8 4 | 0 0 0 8 0 | * * * * 24 * | 0 0 2 .o.3.o.3.x. ... ♦ 0 4 | 0 0 6 | 0 0 0 0 4 | * * * * * 16 | 0 2 0 ----------------------+-------+------------+-------------------+--------------------+------- o..3x..3o..4o.. & ♦ 24 0 | 96 0 0 | 32 64 0 0 0 | 16 8 0 0 0 0 | 2 * * oo.3xo.3ox. ...&#x & ♦ 6 4 | 12 12 6 | 4 4 12 6 4 | 1 0 4 4 0 1 | * 32 * ... xox3oxo4ooo&#xt ♦ 12 12 | 24 48 24 | 0 16 24 48 8 | 0 2 0 16 6 0 | * * 8
oxo3xox3oxo *b3ooo&#xt → both heights = 1/sqrt(2) = 0.707107 (ico || pseudo rit || ico) o..3o..3o.. *b3o.. & | 48 * ♦ 8 4 0 0 | 4 4 4 2 8 2 0 0 | 2 2 2 4 4 4 1 0 0 | 1 2 2 2 .o.3.o.3.o. *b3.o. | * 32 ♦ 0 6 3 3 | 0 0 0 6 6 6 3 3 | 0 0 0 6 6 2 3 1 1 | 0 2 2 3 -------------------------+-------+---------------+--------------------------+--------------------------+---------- ... x.. ... ... & | 2 0 | 192 * * * | 1 1 1 0 1 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 oo.3oo.3oo. *b3oo.&#x & | 1 1 | * 192 * * | 0 0 0 1 2 1 0 0 | 0 0 0 2 2 1 1 0 0 | 0 1 1 2 .x. ... ... ... | 0 2 | * * 48 * | 0 0 0 2 0 0 2 0 | 0 0 0 4 0 0 1 1 0 | 0 2 0 2 ... ... .x. ... | 0 2 | * * * 48 | 0 0 0 0 0 2 0 2 | 0 0 0 0 4 0 1 0 1 | 0 0 2 2 -------------------------+-------+---------------+--------------------------+--------------------------+---------- o..3x.. ... ... & | 3 0 | 3 0 0 0 | 64 * * * * * * * | 1 1 0 1 0 0 0 0 0 | 1 1 0 1 ... x..3o.. ... & | 3 0 | 3 0 0 0 | * 64 * * * * * * | 1 0 1 0 1 0 0 0 0 | 1 0 1 1 ... x.. ... *b3o.. & | 3 0 | 3 0 0 0 | * * 64 * * * * * | 0 1 1 0 0 1 0 0 0 | 1 1 1 0 ox. ... ... ...&#x & | 1 2 | 0 2 1 0 | * * * 96 * * * * | 0 0 0 2 0 0 1 0 0 | 0 1 0 2 ... xo. ... ...&#x & | 2 1 | 1 2 0 0 | * * * * 192 * * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 ... ... ox. ...&#x & | 1 2 | 0 2 0 1 | * * * * * 96 * * | 0 0 0 0 2 0 1 0 0 | 0 0 1 2 .x.3.o. ... ... | 0 3 | 0 0 3 0 | * * * * * * 32 * | 0 0 0 2 0 0 0 1 0 | 0 2 0 1 ... .o.3.x. ... | 0 3 | 0 0 0 3 | * * * * * * * 32 | 0 0 0 0 2 0 0 0 1 | 0 0 2 1 -------------------------+-------+---------------+--------------------------+--------------------------+---------- o..3x..3o.. ... & ♦ 6 0 | 12 0 0 0 | 4 4 0 0 0 0 0 0 | 16 * * * * * * * * | 1 0 0 1 o..3x.. ... *b3o.. & ♦ 6 0 | 12 0 0 0 | 4 0 4 0 0 0 0 0 | * 16 * * * * * * * | 1 1 0 0 ... x..3o.. *b3o.. & ♦ 6 0 | 12 0 0 0 | 0 4 4 0 0 0 0 0 | * * 16 * * * * * * | 1 0 1 0 ox.3xo. ... ...&#x & ♦ 3 3 | 3 6 3 0 | 1 0 0 3 3 0 1 0 | * * * 64 * * * * * | 0 1 0 1 ... xo.3ox. ...&#x & ♦ 3 3 | 3 6 0 3 | 0 1 0 0 3 3 0 1 | * * * * 64 * * * * | 0 0 1 1 ... xo. ... *b3oo.&#x & ♦ 3 1 | 3 3 0 0 | 0 0 1 0 3 0 0 0 | * * * * * 64 * * * | 0 1 1 0 oxo ... oxo ...&#xt ♦ 2 4 | 0 8 2 2 | 0 0 0 4 0 4 0 0 | * * * * * * 24 * * | 0 0 0 2 .x.3.o. ... *b3.o. ♦ 0 4 | 0 0 6 0 | 0 0 0 0 0 0 4 0 | * * * * * * * 8 * | 0 2 0 0 ... .o.3.x. *b3.o. ♦ 0 4 | 0 0 0 6 | 0 0 0 0 0 0 0 4 | * * * * * * * * 8 | 0 0 2 0 -------------------------+-------+---------------+--------------------------+--------------------------+---------- o..3x..3o.. *b3o.. & ♦ 24 0 | 96 0 0 0 | 32 32 32 0 0 0 0 0 | 8 8 8 0 0 0 0 0 0 | 2 * * * ox.3xo. ... *b3oo.&#x & ♦ 6 4 | 12 12 6 0 | 4 0 4 6 12 0 4 0 | 0 1 0 4 0 4 0 1 0 | * 16 * * ... xo.3ox. *b3oo.&#x & ♦ 6 4 | 12 12 0 6 | 0 4 4 0 12 6 0 4 | 0 0 1 0 4 4 0 0 1 | * * 16 * oxo3xox3oxo ... ♦ 12 12 | 24 48 12 12 | 8 8 0 24 24 24 4 4 | 2 0 0 8 8 0 6 0 0 | * * * 8
oxoo3xoxo3oxox3ooxo&#xt → all heights = sqrt(2/5) = 0.632456 (rap || pseudo srip || pseudo inv srip || inv rap) o...3o...3o...3o... & | 20 * ♦ 6 6 0 0 0 | 3 6 3 6 6 0 0 0 0 0 | 3 2 3 6 2 3 0 0 0 0 | 1 2 3 1 .o..3.o..3.o..3.o.. & | * 60 ♦ 0 2 2 4 4 | 0 0 2 1 4 1 2 2 6 6 | 0 0 1 2 2 5 1 4 2 2 | 0 1 3 3 --------------------------+-------+-------------------+----------------------------------+-------------------------------+----------- .... x... .... .... & | 2 0 | 60 * * * * | 1 2 0 1 0 0 0 0 0 0 | 2 1 1 2 0 0 0 0 0 0 | 1 1 2 0 oo..3oo..3oo..3oo..&#x & | 1 1 | * 120 * * * | 0 0 1 1 2 0 0 0 0 0 | 0 0 1 2 1 2 0 0 0 0 | 0 1 2 1 .x.. .... .... .... & | 0 2 | * * 60 * * | 0 0 1 0 0 1 0 0 2 0 | 0 0 1 0 0 2 0 2 1 0 | 0 0 2 2 .... .... .x.. .... & | 0 2 | * * * 120 * | 0 0 0 0 1 0 1 1 0 1 | 0 0 0 1 1 1 1 1 0 1 | 0 1 2 1 .oo.3.oo.3.oo.3.oo.&#x | 0 2 | * * * * 120 | 0 0 0 0 0 0 0 0 2 2 | 0 0 0 0 0 2 0 2 1 1 | 0 0 2 2 --------------------------+-------+-------------------+----------------------------------+-------------------------------+----------- o...3x... .... .... & | 3 0 | 3 0 0 0 0 | 20 * * * * * * * * * | 2 0 1 0 0 0 0 0 0 0 | 1 0 2 0 .... x...3o... .... & | 3 0 | 3 0 0 0 0 | * 40 * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 | 1 1 1 0 ox.. .... .... ....&#x & | 1 2 | 0 2 1 0 0 | * * 60 * * * * * * * | 0 0 1 0 0 2 0 0 0 0 | 0 0 2 1 .... xo.. .... ....&#x & | 2 1 | 1 2 0 0 0 | * * * 60 * * * * * * | 0 0 1 2 0 0 0 0 0 0 | 0 1 2 0 .... .... ox.. ....&#x & | 1 2 | 0 2 0 1 0 | * * * * 120 * * * * * | 0 0 0 1 1 1 0 0 0 0 | 0 1 1 1 .x..3.o.. .... .... & | 0 3 | 0 0 3 0 0 | * * * * * 20 * * * * | 0 0 1 0 0 0 0 2 0 0 | 0 0 2 1 .... .o..3.x.. .... & | 0 3 | 0 0 0 3 0 | * * * * * * 40 * * * | 0 0 0 1 0 0 1 0 0 1 | 0 1 2 0 .... .... .x..3.o.. & | 0 3 | 0 0 0 3 0 | * * * * * * * 40 * * | 0 0 0 0 1 0 1 1 0 0 | 0 1 1 1 .xo. .... .... ....&#x & | 0 3 | 0 0 1 0 2 | * * * * * * * * 120 * | 0 0 0 0 0 1 0 1 1 0 | 0 0 1 2 .... .ox. .... ....&#x & | 0 3 | 0 0 0 1 2 | * * * * * * * * * 120 | 0 0 0 0 0 1 0 1 0 1 | 0 0 2 1 --------------------------+-------+-------------------+----------------------------------+-------------------------------+----------- o...3x...3o... .... & ♦ 6 0 | 12 0 0 0 0 | 4 4 0 0 0 0 0 0 0 0 | 10 * * * * * * * * * | 1 0 1 0 .... x...3o...3o... & ♦ 4 0 | 6 0 0 0 0 | 0 4 0 0 0 0 0 0 0 0 | * 10 * * * * * * * * | 1 1 0 0 ox..3xo.. .... ....&#x & ♦ 3 3 | 3 6 3 0 0 | 1 0 3 3 0 1 0 0 0 0 | * * 20 * * * * * * * | 0 0 2 0 .... xo..3ox.. ....&#x & ♦ 3 3 | 3 6 0 3 0 | 0 1 0 3 3 0 1 0 0 0 | * * * 40 * * * * * * | 0 1 1 0 .... .... ox..3oo..&#x & ♦ 1 3 | 0 3 0 3 0 | 0 0 0 0 3 0 0 1 0 0 | * * * * 40 * * * * * | 0 1 0 1 oxo. .... oxo. ....&#xt & ♦ 1 5 | 0 4 2 2 4 | 0 0 2 0 2 0 0 0 2 2 | * * * * * 60 * * * * | 0 0 1 1 .... .o..3.x..3.o.. & ♦ 0 6 | 0 0 0 12 0 | 0 0 0 0 0 0 4 4 0 0 | * * * * * * 10 * * * | 0 1 1 0 .xo.3.ox. .... ....&#x & ♦ 0 6 | 0 0 3 3 6 | 0 0 0 0 0 1 0 1 3 3 | * * * * * * * 40 * * | 0 0 1 1 .xo. .... .... .ox.&#x ♦ 0 4 | 0 0 2 0 4 | 0 0 0 0 0 0 0 0 4 0 | * * * * * * * * 30 * | 0 0 0 2 .... .ox.3.xo. ....&#x ♦ 0 6 | 0 0 0 6 6 | 0 0 0 0 0 0 2 0 0 6 | * * * * * * * * * 20 | 0 0 2 0 --------------------------+-------+-------------------+----------------------------------+-------------------------------+----------- o...3x...3o...3o... & ♦ 10 0 | 30 0 0 0 0 | 10 20 0 0 0 0 0 0 0 0 | 5 5 0 0 0 0 0 0 0 0 | 2 * * * .... xo..3ox..3oo..&#x & ♦ 4 6 | 6 12 0 12 0 | 0 4 0 6 12 0 4 4 0 0 | 0 1 0 4 4 0 1 0 0 0 | * 10 * * oxo.3xox.3oxo. ....&#xt & ♦ 6 18 | 12 24 12 24 24 | 4 4 12 12 12 4 8 4 12 24 | 1 0 4 4 0 6 1 4 0 4 | * * 10 * oxo. .... oxo.3oox.&#xt & ♦ 1 9 | 0 6 6 6 12 | 0 0 3 0 6 1 0 2 12 6 | 0 0 0 0 2 3 0 2 3 0 | * * * 20
ox(uoo)xo3xo(oxo)ox3ox(oou)xo ox(ouo)xo&#xt → all non-zero heights = height = 1/2 (oct || pseudo cope || pseudo compound of u-tet + u-laced ope + dual u-tet || pseudo cope || inv oct) o.(...)..3o.(...)..3o.(...).. o.(...).. & | 12 * * * ♦ 4 8 0 0 0 0 0 0 | 4 8 8 4 0 0 0 0 0 0 0 0 | 1 8 2 4 4 0 0 0 0 0 0 | 2 4 1 0 .o(...)..3.o(...)..3.o(...).. .o(...).. & | * 48 * * ♦ 0 2 4 1 2 2 1 0 | 0 4 1 2 2 4 2 4 1 2 2 0 | 0 2 2 4 1 2 2 4 1 1 0 | 1 2 2 2 ..(o..)..3..(o..)..3..(o..).. ..(o..).. & | * * 8 * ♦ 0 0 0 0 12 0 0 0 | 0 0 0 0 0 12 6 0 0 6 0 0 | 0 0 0 6 0 4 0 6 3 0 0 | 0 2 3 2 ..(.o.)..3..(.o.)..3..(.o.).. ..(.o.).. | * * * 12 ♦ 0 0 0 0 0 8 0 4 | 0 0 0 0 0 0 0 8 8 0 4 4 | 0 0 2 0 0 0 8 4 0 4 1 | 2 0 1 4 ----------------------------------------------+------------+-------------------------+-------------------------------------+--------------------------------+---------- ..(...).. x.(...).. ..(...).. ..(...).. & | 2 0 0 0 | 24 * * * * * * * | 2 0 2 0 0 0 0 0 0 0 0 0 | 1 4 0 0 1 0 0 0 0 0 0 | 2 2 0 0 oo(...)..3oo(...)..3oo(...).. oo(...)..&#x & | 1 1 0 0 | * 96 * * * * * * | 0 2 1 1 0 0 0 0 0 0 0 0 | 0 2 1 2 1 0 0 0 0 0 0 | 1 2 1 0 .x(...).. ..(...).. ..(...).. ..(...).. & | 0 2 0 0 | * * 96 * * * * * | 0 1 0 0 1 1 0 1 0 0 0 0 | 0 1 1 1 0 1 1 1 0 0 0 | 1 1 1 1 ..(...).. ..(...).. ..(...).. .x(...).. & | 0 2 0 0 | * * * 24 * * * * | 0 0 0 2 0 0 2 0 0 0 0 0 | 0 0 0 4 1 0 0 0 1 0 0 | 0 2 2 0 .o(o..)..3.o(o..)..3.o(o..).. .o(o..)..&#x & | 0 1 1 0 | * * * * 96 * * * | 0 0 0 0 0 2 1 0 0 1 0 0 | 0 0 0 2 0 1 0 2 1 0 0 | 0 1 2 1 .o(.o.)..3.o(.o.)..3.o(.o.).. .o(.o.)..&#x & | 0 1 0 1 | * * * * * 96 * * | 0 0 0 0 0 0 0 2 1 0 1 0 | 0 0 1 0 0 0 2 2 0 1 0 | 1 0 1 2 .o(...)o.3.o(...)o.3.o(...)o. .o(...)o.&#x | 0 2 0 0 | * * * * * * 24 * | 0 0 0 0 0 0 0 0 0 2 2 0 | 0 0 0 0 0 0 0 4 1 1 0 | 0 0 2 2 ..(...).. ..(.x.).. ..(...).. ..(...).. | 0 0 0 2 | * * * * * * * 24 | 0 0 0 0 0 0 0 0 2 0 0 2 | 0 0 0 0 0 0 4 0 0 1 1 | 2 0 0 2 ----------------------------------------------+------------+-------------------------+-------------------------------------+--------------------------------+---------- o.(...)..3x.(...).. ..(...).. ..(...).. & | 3 0 0 0 | 3 0 0 0 0 0 0 0 | 16 * * * * * * * * * * * | 1 2 0 0 0 0 0 0 0 0 0 | 2 1 0 0 ox(...).. ..(...).. ..(...).. ..(...)..&#x & | 1 2 0 0 | 0 2 1 0 0 0 0 0 | * 96 * * * * * * * * * * | 0 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 ..(...).. xo(...).. ..(...).. ..(...)..&#x & | 2 1 0 0 | 1 2 0 0 0 0 0 0 | * * 48 * * * * * * * * * | 0 2 0 0 1 0 0 0 0 0 0 | 1 2 0 0 ..(...).. ..(...).. ..(...).. ox(...)..&#x & | 1 2 0 0 | 0 2 0 1 0 0 0 0 | * * * 48 * * * * * * * * | 0 0 0 2 1 0 0 0 0 0 0 | 0 2 1 0 .x(...)..3.o(...).. ..(...).. ..(...).. & | 0 3 0 0 | 0 0 3 0 0 0 0 0 | * * * * 32 * * * * * * * | 0 1 0 0 0 1 1 0 0 0 0 | 1 1 0 1 ..(...).. ..(...).. .x(o..).. ..(...)..&#x & | 0 2 1 0 | 0 0 1 0 2 0 0 0 | * * * * * 96 * * * * * * | 0 0 0 1 0 1 0 1 0 0 0 | 1 1 0 1 ..(...).. ..(...).. ..(...).. .x(o..)..&#x & | 0 2 1 0 | 0 0 0 1 2 0 0 0 | * * * * * * 48 * * * * * | 0 0 0 2 0 0 0 0 1 0 0 | 0 1 2 0 .x(.o.).. ..(...).. ..(...).. ..(...)..&#x & | 0 2 0 1 | 0 0 1 0 0 2 0 0 | * * * * * * * 96 * * * * | 0 0 1 0 0 0 1 1 0 0 0 | 1 0 1 1 ..(...).. .o(.x.).. ..(...).. ..(...)..&#x & | 0 1 0 2 | 0 0 0 0 0 2 0 1 | * * * * * * * * 48 * * * | 0 0 0 0 0 0 2 0 0 1 0 | 1 0 0 2 .o(o..)o.3.o(o..)o.3.o(o..)o. .o(o..)o.&#x & | 0 2 1 0 | 0 0 0 0 2 0 1 0 | * * * * * * * * * 48 * * | 0 0 0 0 0 0 0 2 1 0 0 | 0 0 2 1 .o(.o.)o.3.o(.o.)o.3.o(.o.)o. .o(.o.)o.&#x | 0 2 0 1 | 0 0 0 0 0 2 1 0 | * * * * * * * * * * 48 * | 0 0 0 0 0 0 0 2 0 1 0 | 0 0 1 2 ..(.o.)..3..(.x.).. ..(...).. ..(...).. & | 0 0 0 3 | 0 0 0 0 0 0 0 3 | * * * * * * * * * * * 16 | 0 0 0 0 0 0 2 0 0 0 1 | 2 0 0 1 ----------------------------------------------+------------+-------------------------+-------------------------------------+--------------------------------+---------- o.(...)..3x.(...)..3o.(...).. ..(...).. & ♦ 6 0 0 0 | 12 0 0 0 0 0 0 0 | 8 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * * | 2 0 0 0 ox(...)..3xo(...).. ..(...).. ..(...)..&#x & ♦ 3 3 0 0 | 3 6 3 0 0 0 0 0 | 1 3 3 0 1 0 0 0 0 0 0 0 | * 32 * * * * * * * * * | 1 1 0 0 ox(.o.).. ..(...).. ox(.o.).. ..(...)..&#xt & ♦ 1 4 0 1 | 0 4 4 0 0 4 0 0 | 0 4 0 0 0 0 0 4 0 0 0 0 | * * 24 * * * * * * * * | 1 0 1 0 ox(..o).. ..(...).. ..(...).. ox(..o)..&#xt & ♦ 1 4 1 0 | 0 4 2 2 4 0 0 0 | 0 2 0 2 0 2 2 0 0 0 0 0 | * * * 48 * * * * * * * | 0 1 1 0 ..(...).. xo(...).. ..(...).. ox(...)..&#x & ♦ 2 2 0 0 | 1 4 0 1 0 0 0 0 | 0 0 2 2 0 0 0 0 0 0 0 0 | * * * * 24 * * * * * * | 0 2 0 0 ..(...).. .o(o..)..3.x(o..).. ..(...)..&#x & ♦ 0 3 1 0 | 0 0 3 0 3 0 0 0 | 0 0 0 0 1 3 0 0 0 0 0 0 | * * * * * 32 * * * * * | 0 1 0 1 .x(.o.)..3.o(.x.).. ..(...).. ..(...)..&#x & ♦ 0 3 0 3 | 0 0 3 0 0 6 0 3 | 0 0 0 0 1 0 0 3 3 0 0 1 | * * * * * * 32 * * * * | 1 0 0 1 ..(...).. ..(...).. .x(oo.)x. ..(...)..&#xr & ♦ 0 4 1 1 | 0 0 2 0 4 4 2 0 | 0 0 0 0 0 2 0 2 0 2 2 0 | * * * * * * * 48 * * * | 0 0 1 1 ..(...).. ..(...).. ..(...).. .x(o.o)x.&#xr & ♦ 0 4 2 0 | 0 0 0 2 8 0 2 0 | 0 0 0 0 0 0 4 0 0 4 0 0 | * * * * * * * * 12 * * | 0 0 2 0 ..(...).. .o(.x.)o. ..(...).. ..(...)..&#x ♦ 0 2 0 2 | 0 0 0 0 0 4 1 1 | 0 0 0 0 0 0 0 0 2 0 2 0 | * * * * * * * * * 24 * | 0 0 0 2 ..(.o.)..3..(.x.)..3..(.o.).. ..(...).. ♦ 0 0 0 6 | 0 0 0 0 0 0 0 12 | 0 0 0 0 0 0 0 0 0 0 0 8 | * * * * * * * * * * 2 | 2 0 0 0 ----------------------------------------------+------------+-------------------------+-------------------------------------+--------------------------------+---------- ox(.o.)..3xo(.x.)..3ox(.o.).. ..(...)..&#xt & ♦ 6 12 0 6 | 12 24 24 0 0 24 0 12 | 8 24 12 0 8 0 0 24 12 0 0 8 | 1 8 6 0 0 0 8 0 0 0 1 | 4 * * * ox(..o)..3xo(..o).. ..(...).. ox(..o)..&#xt & ♦ 3 6 1 0 | 3 12 6 3 6 0 0 0 | 1 6 6 6 2 6 3 0 0 0 0 0 | 0 2 0 3 3 2 0 0 0 0 0 | * 16 * * ox(uoo)xo ..(...).. ox(oou)xo ox(ouo)xo&#xt ♦ 2 16 4 2 | 0 16 16 8 32 16 8 0 | 0 16 0 8 0 16 16 16 0 16 8 0 | 0 0 4 8 0 0 0 8 4 0 0 | * * 6 * .x(.oo)x.3.o(.xo)o. ..(...).. ..(...)..&#xr & ♦ 0 6 1 3 | 0 0 6 0 6 12 3 3 | 0 0 0 0 2 6 0 6 6 3 6 1 | 0 0 0 0 0 2 2 3 0 3 0 | * * * 16
oox3oxo4qoo oxo4ooq&#zx → heights = 0
(tegum sum of q-cube, squaco, and gyro (q,x)-squoct)
seen in the above lace hyper city as central 4-layered line-tower, rhombical oriented 3-layered x-square tower, and dualy-oriented 2-layered q-square tower respectively, from front to back
o..3o..4o.. o..4o.. | 8 * * ♦ 12 0 0 0 0 | 12 12 0 0 0 0 0 | 4 3 12 0 0 0 0 | 4 3 0
.o.3.o.4.o. .o.4.o. | * 48 * ♦ 2 4 2 4 0 | 4 4 2 2 8 4 0 | 2 1 8 4 2 2 0 | 4 2 1
..o3..o4..o ..o4..o | * * 24 ♦ 0 0 0 8 4 | 0 0 0 8 8 4 4 | 0 0 4 8 4 2 1 | 4 1 2
------------------------+---------+-----------------+-----------------------+---------------------+-------
oo.3oo.4oo. oo.4oo.&#x | 1 1 0 | 96 * * * * | 2 2 0 0 0 0 0 | 1 1 4 0 0 0 0 | 2 2 0
... .x. ... ... ... | 0 2 0 | * 96 * * * | 1 0 1 0 2 0 0 | 1 0 2 2 0 1 0 | 2 1 1
... ... ... .x. ... | 0 2 0 | * * 48 * * | 0 2 0 0 0 2 0 | 0 1 4 0 1 0 0 | 2 2 0
.oo3.oo4.oo .oo4.oo&#x | 0 1 1 | * * * 192 * | 0 0 0 1 2 1 0 | 0 0 2 2 1 1 0 | 2 1 1
..x ... ... ... ... | 0 0 2 | * * * * 48 | 0 0 0 2 0 0 2 | 0 0 0 4 1 0 1 | 2 0 2
------------------------+---------+-----------------+-----------------------+---------------------+-------
... ox. ... ... ...&#x | 1 2 0 | 2 1 0 0 0 | 96 * * * * * * | 1 0 2 0 0 0 0 | 2 1 0
... ... ... ox. ...&#x | 1 2 0 | 2 0 1 0 0 | * 96 * * * * * | 0 1 2 0 0 0 0 | 1 2 0
.o.3.x. ... ... ... | 0 3 0 | 0 3 0 0 0 | * * 32 * * * * | 1 0 0 2 0 0 0 | 2 0 1
.ox ... ... ... ...&#x | 0 1 2 | 0 0 0 2 1 | * * * 96 * * * | 0 0 0 2 1 0 0 | 2 0 1
... .xo ... ... ...&#x | 0 2 1 | 0 1 0 2 0 | * * * * 192 * * | 0 0 1 1 0 1 0 | 1 1 1
... ... ... .xo ...&#x | 0 2 1 | 0 0 1 2 0 | * * * * * 96 * | 0 0 2 0 1 0 0 | 2 1 0
..x3..o ... ... ... | 0 0 3 | 0 0 0 0 3 | * * * * * * 32 | 0 0 0 2 0 0 1 | 1 0 2
------------------------+---------+-----------------+-----------------------+---------------------+-------
oo.3ox. ... ... ...&#x ♦ 1 3 0 | 3 3 0 0 0 | 3 0 1 0 0 0 0 | 32 * * * * * * | 2 0 0
... ... qo. ox.4oo.&#zx ♦ 2 4 0 | 8 0 4 0 0 | 0 8 0 0 0 0 0 | * 12 * * * * * | 0 2 0
... oxo ... oxo ...&#xt ♦ 1 4 1 | 4 2 2 4 0 | 2 2 0 0 2 2 0 | * * 96 * * * * | 1 1 0
.ox3.xo ... ... ...&#x ♦ 0 3 3 | 0 3 0 6 3 | 0 0 1 3 3 0 1 | * * * 64 * * * | 1 0 1
.ox ... ... .xo ...&#x ♦ 0 2 2 | 0 0 1 4 1 | 0 0 0 2 0 2 0 | * * * * 48 * * | 2 0 0
... .xo4.oo ... .oq&#zx ♦ 0 4 2 | 0 4 0 8 0 | 0 0 0 0 8 0 0 | * * * * * 24 * | 0 1 1
..x3..o4..o ... ... ♦ 0 0 6 | 0 0 0 0 12 | 0 0 0 0 0 0 8 | * * * * * * 4 | 0 0 2
------------------------+---------+-----------------+-----------------------+---------------------+-------
oox3oxo ... oxo ...&#x ♦ 1 6 3 | 6 6 3 12 3 | 6 3 2 6 6 6 1 | 2 0 3 2 3 0 0 | 32 * *
... oxo4qoo oxo4ooq&#zx ♦ 4 16 4 | 32 16 16 32 0 | 16 32 0 0 32 16 0 | 0 4 16 0 0 4 0 | * 6 *
.ox3.xo4.oo ... .oq&#zx ♦ 0 12 12 | 0 24 0 48 24 | 0 0 8 24 48 0 16 | 0 0 0 16 0 6 2 | * * 4
ox(ou)x(xo)oo3oo(xo)x(ou)xo ox(oo)x(oo)xo4oo(qo)o(qo)oo&#xt → all heights = 1/sqrt(6) = 0.408248 (pt || pseudo tisdip || pseudo compound of bidual (x,q)-tisdip and u-{3} || pseudo shiddip || pseudo compound of para-dual (x,q)-tisdip and dual u-{3} || pseudo dual-para tisdip || pt) ...
© 2004-2025 | top of page |