| Acronym | ... |
| Name |
hyperbolic x4o4o *b3o tesselation, hyperbolic alternated o3o4o4x tesselation |
| Circumradius | 1/sqrt(-4) = 0.5 i |
| Confer |
This non-compact hyperbolic tesselation uses the squat in the sense of an infinite horohedron for some of its cells.
This hyperbolic honeycomb is a paracompact member of the general family o4s4oPo, which would be hypercompact from P>4 on.
Incidence matrix according to Dynkin symbol
x4o4o *b3o (N,M → ∞) . . . . | NM ♦ 12 | 24 | 6 8 -----------+----+-----+-----+------ x . . . | 2 | 6NM | 4 | 2 2 -----------+----+-----+-----+------ x4o . . | 4 | 4 | 6NM | 1 1 -----------+----+-----+-----+------ x4o4o . ♦ M | 2M | M | 6N * x4o . *b3o ♦ 8 | 12 | 6 | * NM
o3o4o4s (N,M → ∞)
demi( . . . . ) | NM ♦ 12 | 24 | 6 8
----------------+----+-----+-----+------
. . o4s | 2 | 6NM | 4 | 2 2
----------------+----+-----+-----+------
sefa( . o4o4s ) | 4 | 4 | 6NM | 1 1
----------------+----+-----+-----+------
. o4o4s ♦ M | 2M | M | 6N *
sefa( o3o4o4s ) ♦ 8 | 12 | 6 | * NM
starting figure: o3o4o4x
o4s4o4o (N,M,K → ∞)
demi( . . . . ) | NMK ♦ 4 8 | 16 8 | 4 2 8
----------------+-----+-----------+-----------+------------
o4s . . | 2 | 2NMK * | 4 0 | 2 0 2
. s4o . | 2 | * 4NMK | 2 2 | 1 1 2
----------------+-----+-----------+-----------+------------
sefa( o4s4o . ) | 4 | 2 2 | 4NMK * | 1 0 1
sefa( . s4o4o ) | 4 | 0 4 | * 2NMK | 0 1 1
----------------+-----+-----------+-----------+------------
o4s4o . ♦ M | M M | M 0 | 4NK * *
. s4o4o ♦ K | 0 2K | 0 K | * 2NM *
sefa( o4s4o4o ) ♦ 8 | 4 8 | 4 2 | * * NMK
starting figure: o4x4o4o
o4s4o *b4o (N,M,K,L → ∞)
demi( . . . . ) | NMKL ♦ 4 4 4 | 8 8 8 | 2 2 2 8
-------------------+------+-------------------+-------------------+--------------------
o4s . . | 2 | 2NMKL * * | 2 2 0 | 1 1 0 2
. s4o . | 2 | * 2NMKL * | 2 0 2 | 1 0 1 2
. s . *b4o | 2 | * * 2NMKL | 0 2 2 | 0 1 1 2
-------------------+------+-------------------+-------------------+--------------------
sefa( o4s4o . ) | 4 | 2 2 0 | 2NMKL * * | 1 0 0 1
sefa( o4s . *b4o ) | 4 | 2 0 2 | * 2NMKL * | 0 1 0 1
sefa( . s4o *b4o ) | 4 | 0 2 2 | * * 2NMKL | 0 0 1 1
-------------------+------+-------------------+-------------------+--------------------
o4s4o . ♦ M | M M 0 | M 0 0 | 2NKL * * *
o4s . *b4o ♦ K | K 0 K | 0 K 0 | * 2NML * *
. s4o *b4o ♦ L | 0 L L | 0 0 L | * * 2NMK *
sefa( o4s4o *b4o ) ♦ 8 | 4 4 4 | 2 2 2 | * * * NMKL
starting figure: o4x4o *b4o
s4o4s *b4o (N,M,K,L → ∞)
demi( . . . . ) | NMKL ♦ 4 4 4 | 16 4 4 | 4 1 1 8
-------------------+------+-------------------+-----------------+------------------
s4o . . | 2 | 2NMKL * * | 2 2 0 | 1 1 0 2
s 2 s . | 2 | * 2NMKL * | 4 0 0 | 2 0 0 2
. o4s . | 2 | * * 2NMKL | 2 0 2 | 1 0 1 2
-------------------+------+-------------------+-----------------+------------------
sefa( s4o4s . ) | 4 | 1 2 1 | 4NMKL * * | 1 0 0 1
sefa( s4o . *b4o ) | 4 | 4 0 0 | * NMKL * | 0 1 0 1
sefa( . o4s *b4o ) | 4 | 0 0 4 | * * NMKL | 0 0 1 1
-------------------+------+-------------------+-----------------+------------------
s4o4s . ♦ 2M | M 2M M | 2M 0 0 | 2NKL * * *
s4o . *b4o ♦ K | 2K 0 0 | 0 K 0 | * NML * *
. o4s *b4o ♦ L | 0 0 2L | 0 0 L | * * NMK *
sefa( s4o4s *b4o ) ♦ 8 | 4 4 4 | 4 1 1 | * * * NMKL
starting figure: x4o4x *b4o
s4o4s4o4*a (N,M,K,L,P → ∞)
demi( . . . . ) | NMKLP ♦ 2 4 2 2 2 | 8 4 8 4 | 2 1 2 1 8
-------------------+-------+--------------------------------+---------------------------+--------------------------
s4o . . | 2 | NMKLP * * * * | 2 2 0 0 | 1 1 0 0 2
s 2 s . | 2 | * 2NMKLP * * * | 2 0 2 0 | 1 0 1 0 2
s . . o4*a | 2 | * * NMKLP * * | 0 2 2 0 | 0 1 1 0 2
. o4s . | 2 | * * * NMKLP * | 2 0 0 2 | 1 0 0 1 2
. . s4o | 2 | * * * * NMKLP | 0 0 2 2 | 0 0 1 1 2
-------------------+-------+--------------------------------+---------------------------+--------------------------
sefa( s4o4s . ) | 4 | 1 2 0 1 0 | 2NMKLP * * * | 1 0 0 0 1
sefa( s4o . o4*a ) | 4 | 2 0 2 0 0 | * NMKLP * * | 0 1 0 0 1
sefa( s . s4o4*a ) | 4 | 0 2 1 0 1 | * * 2NMKLP * | 0 0 1 0 1
sefa( . o4s4o ) | 4 | 0 0 0 2 2 | * * * NMKLP | 0 0 0 1 1
-------------------+-------+--------------------------------+---------------------------+--------------------------
s4o4s . ♦ 2M | M 2M 0 M 0 | 2M 0 0 0 | NKLP * * * *
s4o . o4*a ♦ K | K 0 K 0 0 | 0 K 0 0 | * NMLP * * *
s . s4o4*a ♦ 2L | 0 2L L 0 L | 0 0 2L 0 | * * NMKP * *
. o4s4o ♦ P | 0 0 0 P P | 0 0 0 P | * * * NMKL *
sefa( s4o4s4o4*a ) ♦ 8 | 2 4 2 2 2 | 2 1 2 1 | * * * * NMKLP
starting figure: x4o4x4o4*a
© 2004-2025 | top of page |