Acronym | ... |
Name |
Shephard's 3-generalised tesseract, complex polychoron x3-4-o2-3-o2-3-o2, γ34 |
© | |
Vertex figure | tet |
Coordinates | (ε3n, ε3m, ε3k, ε3l) for any 1≤n,m,k,l≤3, where ε3=exp(2πi/3) |
Dual | x2-3-o2-3-o2-4-o3 |
Face vector | 81, 108, 54, 12 |
Confer |
|
External links |
The (complex) faces are x3-4-o2, the (complex) cells are x3-4-o2-3-o2, and the vertex figure here is just x2-3-o2-3-o2, i.e. nothing but the real space tet.
The below various incidence representations are direct, next dimensional consequences from what was explained already at xp-4-o2 = xp xp. I.e. the according cartesian or prism product applies for complex polytopes alike. In fact, these complex polychora simply re-use the even-dimensional elements of all the triangles, triddips, and trittips from this real quadprism only.
Incidence matrix according to Dynkin symbol
x3-4-o2-3-o2-3-o2 . . . . | 81 ♦ 4 | 6 | 4 -----------------+----+-----+----+--- x3 . . . | 3 | 108 | 3 | 3 -----------------+----+-----+----+--- x3-4-o2 . . ♦ 9 | 6 | 54 | 2 -----------------+----+-----+----+--- x3-4-o2-3-o2 . ♦ 27 | 27 | 9 | 12
x3 x3-4-o2-3-o2 . . . . | 81 ♦ 1 3 | 3 3 | 3 1 -----------------+----+-------+-------+---- x3 . . . | 3 | 27 * | 3 0 | 3 0 . x3 . . | 3 | * 81 | 1 2 | 2 1 -----------------+----+-------+-------+---- x3 x3 . . ♦ 9 | 3 3 | 27 * | 2 0 . x3-4-o2 . ♦ 9 | 0 6 | * 27 | 1 1 -----------------+----+-------+-------+---- x3 x3-4-o2 . ♦ 27 | 9 18 | 6 3 | 9 * . x3-4-o2-3-o2 ♦ 27 | 0 27 | 0 9 | * 3
x3-4-o2 x3-4-o2 . . . . | 81 ♦ 2 2 | 1 4 1 | 2 2 -----------------+----+-------+--------+---- x3 . . . | 3 | 54 * | 1 2 0 | 2 1 . . x3 . | 3 | * 54 | 0 2 1 | 1 2 -----------------+----+-------+--------+---- x3-4-o2 . . ♦ 9 | 6 0 | 9 * * | 2 0 x3 . x3 . ♦ 9 | 3 3 | * 36 * | 1 1 . . x3-4-o2 ♦ 9 | 0 6 | * * 9 | 0 2 -----------------+----+-------+--------+---- x3-4-o2 x3 . ♦ 27 | 18 9 | 3 6 0 | 6 * x3 . x3-4-o2 ♦ 27 | 9 18 | 0 6 3 | * 6
x3 x3 x3-4-o2 . . . . | 81 ♦ 1 1 2 | 1 2 2 1 | 2 1 1 -----------------+----+----------+-----------+------- x3 . . . | 3 | 27 * * | 1 2 0 0 | 2 1 0 . x3 . . | 3 | * 27 * | 1 0 2 0 | 2 0 1 . . x3 . | 3 | * * 54 | 0 1 1 1 | 1 1 1 -----------------+----+----------+-----------+------- x3 x3 . . ♦ 9 | 3 3 0 | 9 * * * | 2 0 0 x3 . x3 . ♦ 9 | 3 0 3 | * 18 * * | 1 1 0 . x3 x3 . ♦ 9 | 0 3 3 | * * 18 * | 1 0 1 . . x3-4-o2 ♦ 9 | 0 0 6 | * * * 9 | 0 1 1 -----------------+----+----------+-----------+------- x3 x3 x3 . ♦ 27 | 9 9 9 | 3 3 3 0 | 6 * * x3 . x3-4-o2 ♦ 27 | 9 0 18 | 0 6 0 3 | * 3 * . x3 x3-4-o2 ♦ 27 | 0 9 18 | 0 0 6 3 | * * 3
x3 x3 x3 x3 . . . . | 81 ♦ 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 -----------------+----+-------------+-------------+-------- x3 . . . | 3 | 27 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x3 . . | 3 | * 27 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x3 . | 3 | * * 27 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x3 | 3 | * * * 27 | 0 0 1 0 1 1 | 0 1 1 1 -----------------+----+-------------+-------------+-------- x3 x3 . . ♦ 9 | 3 3 0 0 | 9 * * * * * | 1 1 0 0 x3 . x3 . ♦ 9 | 3 0 3 0 | * 9 * * * * | 1 0 1 0 x3 . . x3 ♦ 9 | 3 0 0 3 | * * 9 * * * | 0 1 1 0 . x3 x3 . ♦ 9 | 0 3 3 0 | * * * 9 * * | 1 0 0 1 . x3 . x3 ♦ 9 | 0 3 0 3 | * * * * 9 * | 0 1 0 1 . . x3 x3 ♦ 9 | 0 0 3 3 | * * * * * 9 | 0 0 1 1 -----------------+----+-------------+-------------+-------- x3 x3 x3 . ♦ 27 | 3 3 3 0 | 3 3 0 3 0 0 | 3 * * * x3 x3 . x3 ♦ 27 | 3 3 0 3 | 3 0 3 0 3 0 | * 3 * * x3 . x3 x3 ♦ 27 | 3 0 3 3 | 0 3 3 0 0 3 | * * 3 * . x3 x3 x3 ♦ 27 | 0 3 3 3 | 0 0 0 3 3 3 | * * * 3
© 2004-2025 | top of page |