Acronym sidtid
TOCID symbol ID*
Name small ditrigonary icosidodecahedron,
holosnub dodecahedron,
vertex figure of sidtixhi
 
 © ©
Circumradius sqrt(3)/2 = 0.866025
Vertex figure [(5/2,3)3]
Snub derivation
General of army doe
Colonel of regiment (is itself locally convex – other uniform polyhedral members: ditdid   gidtid – uniform compound member: rhom – other edge facetings)
Dual stai
Dihedral angles
  • between {3} and {5/2}:   arccos(-sqrt[(5+2 sqrt(5))/15]) = 142.622632°
Face vector 20, 60, 32
Confer
Grünbaumian relatives:
sidtid+ditdid   sidtid+ditdid+gidtid   sidtid+gidtid   sicdatrid   2sidtid+5cube   3sidtid  
facetings:
ditdid (sidtid-12-0-0-12)   gidtid (sidtid-0-20-0-12)   rhom (sidtid-0-0-30-0)   rapescu (sidtid-0-5-5-1)   stiscu (sidtid-1-5-5-0)   trippescu (sidtid-0-3-3-3)   quistet (sidtid-0-8-12-0-b)   dritit (sidtid-3-0-6-3-b)   sifodib (sidtid-0-10-20-2)   gifodib (sidtid-2-10-20-0)   stapper (sidtid-2-4-2-2)   stopper (sidtid-2-4-4-2)  
general polytopal classes:
Wythoffian polyhedra  
External
links
hedrondude   wikipedia   polytopewiki   WikiChoron   mathworld   Polyedergarten

As abstract polytope sidtid is isomorphic to gidtid, thereby replacing pentagrams by pentagons.

Sidtid also can be obtained as a blend of gidtid with ditdid, blending out the pentagons.


Incidence matrix according to Dynkin symbol

x5/2o3o3*a

.   . .    | 20 |  6 |  3  3
-----------+----+----+------
x   . .    |  2 | 60 |  1  1
-----------+----+----+------
x5/2o .    |  5 |  5 | 12  *
x   . o3*a |  3 |  3 |  * 20

o3/2x5/3o3*a

.   .   . | 20 |  6 |  3  3
----------+----+----+------
.   x   . |  2 | 60 |  1  1
----------+----+----+------
o3/2x   . |  3 |  3 | 20  *
.   x5/3o |  5 |  5 |  * 12

o3/2o5/3x3*a

.   .   .    | 20 |  6 |  3  3
-------------+----+----+------
.   .   x    |  2 | 60 |  1  1
-------------+----+----+------
.   o5/3x    |  5 |  5 | 12  *
o   .   x3*a |  3 |  3 |  * 20

x3/2o3/2o5/2*a

.   .   .      | 20 |  6 |  3  3
---------------+----+----+------
x   .   .      |  2 | 60 |  1  1
---------------+----+----+------
x3/2o   .      |  3 |  3 | 20  *
x   .   o5/2*a |  5 |  5 |  * 12

β5o3o

both( . . . ) | 20 |  6 |  3  3
--------------+----+----+------
sefa( β5o . ) |  2 | 60 |  1  1
--------------+----+----+------
      β5o .     5 |  5 | 12  *
sefa( β5o3o ) |  3 |  3 |  * 20

starting figure: x5o3o

© 2004-2024
top of page