Acronym hext
demitesseractic tetracomb,
Delone complex of body-centered tesseractic lattice,
Gosset polytope 11,1,1
Vertex layers
(first ones only)
 Layer Symmetry Subsymmetries o3o3o4o3o o3o3o4o . . o3o4o3o 1 x3o3o4o3o x3o3o4o .hypercell first . o3o4o3overtex first 2 o3o3x4o . . x3o4o3overtex figure 3 x3x3o4o . . o3o4o3q 4 ... . o3x4o3o ... ...
Coordinates
1. (i, j, k, l)                                    i.e. all integer touples (inscribed test) and
2. (i+1/2, j+1/2, k+1/2, l+1/2)     i.e. all half-integer touples (its body centers, a shifted test)
• or just   (i/sqrt(2), j/sqrt(2), k/sqrt(2), l/sqrt(2))           for integers i,j,k,l with i+j+k+l even (as being the hemiation of test)
Dual icot
Confer
related tesselations:
Delone complex of primitive tesseractic lattice   Voronoi complex of primitive tesseractic lattice   Voronoi complex of bct lattice
general polytopal classes:
noble polytopes   partial Stott expansions   Coxeter-Elte-Gosset polytopes
External

Incidence matrix according to Dynkin symbol

```x3o3o4o3o   (N → ∞)

. . . . . | N ♦  24 |  96 |  96 | 24
----------+---+-----+-----+-----+---
x . . . . | 2 | 12N ♦   8 |  12 |  6
----------+---+-----+-----+-----+---
x3o . . . | 3 |   3 | 32N |   3 |  3
----------+---+-----+-----+-----+---
x3o3o . . ♦ 4 |   6 |   4 | 24N |  2
----------+---+-----+-----+-----+---
x3o3o4o . ♦ 8 |  24 |  32 |  16 | 3N
```

```x3o3o *b3o4o   (N → ∞)

. . .    . . | N ♦  24 |  96 | 32  64 | 16 8
-------------+---+-----+-----+--------+-----
x . .    . . | 2 | 12N ♦   8 |  4   8 |  4 2
-------------+---+-----+-----+--------+-----
x3o .    . . | 3 |   3 | 32N |  1   2 |  2 1
-------------+---+-----+-----+--------+-----
x3o3o    . . ♦ 4 |   6 |   4 | 8N   * |  2 0
x3o . *b3o . ♦ 4 |   6 |   4 |  * 16N |  1 1
-------------+---+-----+-----+--------+-----
x3o3o *b3o . ♦ 8 |  24 |  32 |  8   8 | 2N *
x3o . *b3o4o ♦ 8 |  24 |  32 |  0  16 |  * N
```

```x3o3o *b3o *b3o   (N → ∞)

. . .    .    . | N ♦  24 |  96 | 32 32 32 | 8 8 8
----------------+---+-----+-----+----------+------
x . .    .    . | 2 | 12N ♦   8 |  4  4  4 | 2 2 2
----------------+---+-----+-----+----------+------
x3o .    .    . | 3 |   3 | 32N |  1  1  1 | 1 1 1
----------------+---+-----+-----+----------+------
x3o3o    .    . ♦ 4 |   6 |   4 | 8N  *  * | 1 1 0
x3o . *b3o    . ♦ 4 |   6 |   4 |  * 8N  * | 1 0 1
x3o .    . *b3o ♦ 4 |   6 |   4 |  *  * 8N | 0 1 1
----------------+---+-----+-----+----------+------
x3o3o *b3o    . ♦ 8 |  24 |  32 |  8  8  0 | N * *
x3o3o    . *b3o ♦ 8 |  24 |  32 |  8  0  8 | * N *
x3o . *b3o *b3o ♦ 8 |  24 |  32 |  0  8  8 | * * N
```

```s4o3o3o4o   (N → ∞)

demi( . . . . . ) | N ♦  24 |  96 |  64 32 | 8 16
------------------+---+-----+-----+--------+-----
s4o . . .   | 2 | 12N ♦   8 |   8  4 | 2  4
------------------+---+-----+-----+--------+-----
sefa( s4o3o . . ) | 3 |   3 | 32N |   2  1 | 1  2
------------------+---+-----+-----+--------+-----
s4o3o . .   ♦ 4 |   6 |   4 | 16N  * | 1  1
sefa( s4o3o3o . ) ♦ 4 |   6 |   4 |   * 8N | 0  2
------------------+---+-----+-----+--------+-----
s4o3o3o .   ♦ 8 |  24 |  32 |  16  0 | N  *
sefa( s4o3o3o3o ) ♦ 8 |  24 |  32 |   8  8 | * 2N

starting figure: x4o3o3o4o
```

```s4o3o3o4s   (N → ∞)

demi( . . . . . ) | 8N ♦   6  12   6 |  12  36  36  12 |  4  12  12  4  4  16  24  16  4 | 1  4  6  4 1  8
------------------+----+-------------+-----------------+---------------------------------+----------------
s4o . . .   |  2 | 24N   *   * ♦   4   4   0   0 |  2   2   0  0  2   4   2   0  0 | 1  2  1  0 0  2
s . 2 . s   |  2 |   * 48N   * ♦   0   4   4   0 |  0   2   2  0  0   2   4   2  0 | 0  1  2  1 0  2
. . . o4s   |  2 |   *   * 24N ♦   0   0   4   4 |  0   0   2  2  0   0   2   4  2 | 0  0  1  2 1  2
------------------+----+-------------+-----------------+---------------------------------+----------------
sefa( s4o3o . . ) |  3 |   3   0   0 | 32N   *   *   * |  1   0   0  0  1   1   0   0  0 | 1  1  0  0 0  1
sefa( s4o . 2 s ) |  3 |   1   2   0 |   * 96N   *   * |  0   1   0  0  0   1   1   0  0 | 0  1  1  0 0  1
sefa( s 2 . o4s ) |  3 |   0   2   1 |   *   * 96N   * |  0   0   1  0  0   0   1   1  0 | 0  0  1  1 0  1
sefa( . . o3o4s ) |  3 |   0   0   3 |   *   *   * 32N |  0   0   0  1  0   0   0   1  1 | 0  0  0  1 1  1
------------------+----+-------------+-----------------+---------------------------------+----------------
s4o3o . .   ♦  4 |   6   0   0 |   4   0   0   0 | 8N   *   *  *  *   *   *   *  * | 1  1  0  0 0  0
s4o . 2 s   ♦  4 |   2   4   0 |   0   4   0   0 |  * 24N   *  *  *   *   *   *  * | 0  1  1  0 0  0
s 2 . o4s   ♦  4 |   0   4   2 |   0   0   4   0 |  *   * 24N  *  *   *   *   *  * | 0  0  1  1 0  0
. . o3o4s   ♦  4 |   0   0   6 |   0   0   0   4 |  *   *   * 8N  *   *   *   *  * | 0  0  0  1 1  0
sefa( s4o3o3o . ) ♦  4 |   6   0   0 |   4   0   0   0 |  *   *   *  * 8N   *   *   *  * | 1  0  0  0 0  1
sefa( s4o3o 2 s ) ♦  4 |   3   3   0 |   1   3   0   0 |  *   *   *  *  * 32N   *   *  * | 0  1  0  0 0  1
sefa( s4o 2 o4s ) ♦  4 |   1   4   1 |   0   2   2   0 |  *   *   *  *  *   * 48N   *  * | 0  0  1  0 0  1
sefa( s 2 o3o4s ) ♦  4 |   0   3   3 |   0   0   3   1 |  *   *   *  *  *   *   * 32N  * | 0  0  0  1 0  1
sefa( . o3o3o4s ) ♦  4 |   0   0   6 |   0   0   0   4 |  *   *   *  *  *   *   *   * 8N | 0  0  0  0 1  1
------------------+----+-------------+-----------------+---------------------------------+----------------
s4o3o3o .   ♦  8 |  24   0   0 |  32   0   0   0 |  8   0   0  0  8   0   0   0  0 | N  *  *  * *  *
s4o3o 2 s   ♦  8 |  12  12   0 |   8  24   0   0 |  2   6   0  0  0   8   0   0  0 | * 4N  *  * *  *
s4o 2 o4s   ♦  8 |   4  16   4 |   0  16  16   0 |  0   4   4  0  0   0   8   0  0 | *  * 6N  * *  *
s 2 o3o4s   ♦  8 |   0  12  12 |   0   0  24   8 |  0   0   6  2  0   0   0   8  0 | *  *  * 4N *  *
. o3o3o4s   ♦  8 |   0   0  24 |   0   0   0  32 |  0   0   0  8  0   0   0   0  8 | *  *  *  * N  *
sefa( s4o3o3o4s ) ♦  8 |   6  12   6 |   4  12  12   4 |  0   0   0  0  1   4   6   4  1 | *  *  *  * * 8N

starting figure: x4o3o3o4x
```