Acronym penth (alt.: stenoh) Name penteractic pentacomb,5D hypercubical honeycomb (δ5),(alt.: small terated penteractic pentacomb) Dual (selfdual) Confer general polytopal classes: hypercubical honeycomb Externallinks

Incidence matrix according to Dynkin symbol

```x4o3o3o3o4o   (N → ∞)

. . . . . . |  N ♦ 10 |  40 |  80 | 80 | 32
------------+----+----+-----+-----+----+---
x . . . . . |  2 | 5N ♦   8 |  24 | 32 | 16
------------+----+----+-----+-----+----+---
x4o . . . . |  4 |  4 | 10N ♦   6 | 12 |  8
------------+----+----+-----+-----+----+---
x4o3o . . . ♦  8 | 12 |   6 | 10N |  4 |  4
------------+----+----+-----+-----+----+---
x4o3o3o . . ♦ 16 | 32 |  24 |   8 | 5N |  2
------------+----+----+-----+-----+----+---
x4o3o3o3o . ♦ 32 | 80 |  80 |  40 | 10 |  N
```

```o3o3o *b3o3o4x   (N → ∞)

. . .    . . . | 2N ♦  10 |  40 |  80 |  80 | 16 16
---------------+----+-----+-----+-----+-----+------
. . .    . . x |  2 | 10N ♦   8 |  24 |  32 |  8  8
---------------+----+-----+-----+-----+-----+------
. . .    . o4x |  4 |   4 | 20N ♦   6 |  12 |  4  4
---------------+----+-----+-----+-----+-----+------
. . .    o3o4x ♦  8 |  12 |   6 | 20N |   4 |  2  2
---------------+----+-----+-----+-----+-----+------
. o . *b3o3o4x ♦ 16 |  32 |  24 |   8 | 10N |  1  1
---------------+----+-----+-----+-----+-----+------
o3o . *b3o3o4x ♦ 32 |  80 |  80 |  40 |  10 |  N  *
. o3o *b3o3o4x ♦ 32 |  80 |  80 |  40 |  10 |  *  N
```

```x4o3o3o3o4x   (N → ∞)

. . . . . . | 32N ♦   5   5 |  10   20  10 |  10   30   30  10 |   5  20  30  20   5 | 1  5  10  10  5 1
------------+-----+---------+--------------+-------------------+---------------------+------------------
x . . . . . |   2 | 80N   * ♦   4    4   0 |   6   12    6   0 |   4  12  12   4   0 | 1  4   6   4  1 0
. . . . . x |   2 |   * 80N ♦   0    4   4 |   0    6   12   6 |   0   4  12  12   4 | 0  1   4   6  4 1
------------+-----+---------+--------------+-------------------+---------------------+------------------
x4o . . . . |   4 |   4   0 | 80N    *   * ♦   3    3    0   0 |   3   6   3   0   0 | 1  3   3   1  0 0
x . . . . x |   4 |   2   2 |   * 160N   * ♦   0    3    3   0 |   0   3   6   3   0 | 0  1   3   3  1 0
. . . . o4x |   4 |   0   4 |   *    * 80N ♦   0    0    3   3 |   0   0   3   6   3 | 0  0   1   3  3 1
------------+-----+---------+--------------+-------------------+---------------------+------------------
x4o3o . . . ♦   8 |  12   0 |   6    0   0 | 40N    *    *   * |   2   2   0   0   0 | 1  2   1   0  0 0
x4o . . . x ♦   8 |   8   4 |   2    4   0 |   * 120N    *   * |   0   2   2   0   0 | 0  1   2   1  0 0
x . . . o4x ♦   8 |   4   8 |   0    4   2 |   *    * 120N   * |   0   0   2   2   0 | 0  0   1   2  1 0
. . . o3o4x ♦   8 |   0  12 |   0    0   6 |   *    *    * 40N |   0   0   0   2   2 | 0  0   0   1  2 1
------------+-----+---------+--------------+-------------------+---------------------+------------------
x4o3o3o . . ♦  16 |  32   0 |  24    0   0 |   8    0    0   0 | 10N   *   *   *   * | 1  1   0   0  0 0
x4o3o . . x ♦  16 |  24   8 |  12   12   0 |   2    6    0   0 |   * 40N   *   *   * | 0  1   1   0  0 0
x4o . . o4x ♦  16 |  16  16 |   4   16   4 |   0    4    4   0 |   *   * 60N   *   * | 0  0   1   1  0 0
x . . o3o4x ♦  16 |   8  24 |   0   12  12 |   0    0    6   2 |   *   *   * 40N   * | 0  0   0   1  1 0
. . o3o3o4x ♦  16 |   0  32 |   0    0  24 |   0    0    0   8 |   *   *   *   * 10N | 0  0   0   0  1 1
------------+-----+---------+--------------+-------------------+---------------------+------------------
x4o3o3o3o . ♦  32 |  80   0 |  80    0   0 |  40    0    0   0 |  10   0   0   0   0 | N  *   *   *  * *
x4o3o3o . x ♦  32 |  64  16 |  48   32   0 |  16   24    0   0 |   2   8   0   0   0 | * 5N   *   *  * *
x4o3o . o4x ♦  32 |  48  32 |  24   48   8 |   4   24   12   0 |   0   4   6   0   0 | *  * 10N   *  * *
x4o . o3o4x ♦  32 |  32  48 |   8   48  24 |   0   12   24   4 |   0   0   6   4   0 | *  *   * 10N  * *
x . o3o3o4x ♦  32 |  16  64 |   0   32  48 |   0    0   24  16 |   0   0   0   8   2 | *  *   *   * 5N *
. o3o3o3o4x ♦  32 |   0  80 |   0    0  80 |   0    0    0  40 |   0   0   0   0  10 | *  *   *   *  * N
```
```or
. . . . . .    | 16N ♦  10 |  20  20 |  20   60 |  10  40  30 | 2 10  20
---------------+-----+-----+---------+----------+-------------+---------
x . . . . .  & |   2 | 80N ♦   4   4 |   6   18 |   4  16  12 | 1  5  10
---------------+-----+-----+---------+----------+-------------+---------
x4o . . . .  & |   4 |   4 | 80N   * ♦   3    3 |   3   6   3 | 1  3   4
x . . . . x    |   4 |   4 |   * 80N ♦   0    6 |   0   6   6 | 0  2   6
---------------+-----+-----+---------+----------+-------------+---------
x4o3o . . .  & ♦   8 |  12 |   6   0 | 40N    * |   2   2   0 | 1  2   1
x4o . . . x  & ♦   8 |  12 |   2   4 |   * 120N |   0   2   2 | 0  1   3
---------------+-----+-----+---------+----------+-------------+---------
x4o3o3o . .  & ♦  16 |  32 |  24   0 |   8    0 | 10N   *   * | 1  1   0
x4o3o . . x  & ♦  16 |  32 |  12  12 |   2    6 |   * 40N   * | 0  1   1
x4o . . o4x    ♦  16 |  32 |   8  16 |   0    8 |   *   * 30N | 0  0   2
---------------+-----+-----+---------+----------+-------------+---------
x4o3o3o3o .  & ♦  32 |  80 |  80   0 |  40    0 |  10   0   0 | N  *   *
x4o3o3o . x  & ♦  32 |  80 |  48  32 |  16   24 |   2   8   0 | * 5N   *
x4o3o . o4x  & ♦  32 |  80 |  32  48 |   4   36 |   0   4   6 | *  * 10N
```

```x∞o x4o3o3o4o

...
```

```x∞x x4o3o3o4o

...
```

```x∞o x4o3o3o4x

...
```

```x∞x x4o3o3o4x

...
```

```x∞o o3o3o *d3o4x

...
```

```x∞x o3o3o *d3o4x

...
```

```x4o4o x4o3o4o

...
```

```o4x4o x4o3o4o

...
```

```x4o4x x4o3o4o

...
```

```x4o4o x4o3o4x

...
```

```o4x4o x4o3o4x

...
```

```x4o4x x4o3o4x

...
```

```x4o4o o3o3o *e4x

...
```

```o4x4o o3o3o *e4x

...
```

```x4o4x o3o3o *e4x

...
```

```x∞o x∞o x4o3o4o

...
```

```x∞x x∞o x4o3o4o

...
```

```x∞x x∞x x4o3o4o

...
```

```x∞o x∞o x4o3o4x

...
```

```x∞x x∞o x4o3o4x

...
```

```x∞x x∞x x4o3o4x

...
```

```x∞o x4o4o x4o4o

...
```

```x∞x x4o4o x4o4o

...
```

```x∞o o4x4o x4o4o

...
```

```x∞x o4x4o x4o4o

...
```

```x∞o o4x4o o4x4o

...
```

```x∞x o4x4o o4x4o

...
```

```x∞o x4o4x x4o4o

...
```

```x∞x x4o4x x4o4o

...
```

```x∞o x4o4x o4x4o

...
```

```x∞x x4o4x o4x4o

...
```

```x∞o x4o4x x4o4x

...
```

```x∞x x4o4x x4o4x

...
```

```x∞o x∞o x∞o x4o4o

...
```

```x∞x x∞o x∞o x4o4o

...
```

```x∞x x∞x x∞o x4o4o

...
```

```x∞x x∞x x∞x x4o4o

...
```

```x∞o x∞o x∞o o4x4o

...
```

```x∞x x∞o x∞o o4x4o

...
```

```x∞x x∞x x∞o o4x4o

...
```

```x∞x x∞x x∞x o4x4o

...
```

```x∞o x∞o x∞o x4o4x

...
```

```x∞x x∞o x∞o x4o4x

...
```

```x∞x x∞x x∞o x4o4x

...
```

```x∞x x∞x x∞x x4o4x

...
```

```x∞o x∞o x∞o x∞o x∞o

...
```

```x∞x x∞o x∞o x∞o x∞o

...
```

```x∞x x∞x x∞o x∞o x∞o

...
```

```x∞x x∞x x∞x x∞o x∞o

...
```

```x∞x x∞x x∞x x∞x x∞o

...
```

```x∞x x∞x x∞x x∞x x∞x

...
```