Acronym sidtaxhi
Name small ditetrahedronary hexacosihecatonicosachoron
Cross sections
 ©
Circumradius sqrt[3+sqrt(5)] = 2.288246
General of army hi
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells cube dip ditdid doe gidtid id pip saddid sidtid sird srid tet tigid trip
siddatchi 60000120000001200000
sadtap (compound) 0720000000000000
siddatady 001201200000000000
sefradit thix (exotic) 0012000001200006001200
sradditdahix 00120000012000060000
sedit pathi (exotic) 0001201200720000120000
sidtaxady 00012012000000060000
sridtathi 00012001200012000000
sirdtaxady 00012001200000060000
saquid paxhi (fissary) 00012000720000060001200
sefidtethi (exotic) 0001200001201200001200
sand tathi 00012000012012000000
sirdtapady 000120000000120001200
sirdatady 000012012000000000
sadtef pixady (exotic) 00001200000012060001200
sadtifady (fissary) 000001200120000000
siddit paxhi 00000072000012060000
sidtaxhi 000000001200060000
sitphi (fissary) 0000000000001200
& others)
Face vector 600, 3600, 3120, 720
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope sidtaxhi is isomorphic to gadtaxhi, thereby replacing pentagrams by pentagons, resp. sidtid by gidtid.


Incidence matrix according to Dynkin symbol

o3o3o5/2x3*b

. . .   .    | 600    12 |   6   12 |   4   4
-------------+-----+------+----------+--------
. . .   x    |   2 | 3600 |   1    2 |   1   2
-------------+-----+------+----------+--------
. . o5/2x    |   5 |    5 | 720    * |   0   2
. o .   x3*b |   3 |    3 |   * 2400 |   1   1
-------------+-----+------+----------+--------
o3o .   x3*b    4 |    6 |   0    4 | 600   *
. o3o5/2x3*b   20 |   60 |  12   20 |   * 120

o3o3o5/3x3/2*b

. . .   .      | 600    12 |   6   12 |   4   4
---------------+-----+------+----------+--------
. . .   x      |   2 | 3600 |   1    2 |   1   2
---------------+-----+------+----------+--------
. . o5/3x      |   5 |    5 | 720    * |   0   2
. o .   x3/2*b |   3 |    3 |   * 2400 |   1   1
---------------+-----+------+----------+--------
o3o .   x3/2*b    4 |    6 |   0    4 | 600   *
. o3o5/3x3/2*b   20 |   60 |  12   20 |   * 120

o3o3/2o5/2x3/2*b

. .   .   .      | 600    12 |   6   12 |   4   4
-----------------+-----+------+----------+--------
. .   .   x      |   2 | 3600 |   1    2 |   1   2
-----------------+-----+------+----------+--------
. .   o5/2x      |   5 |    5 | 720    * |   0   2
. o   .   x3/2*b |   3 |    3 |   * 2400 |   1   1
-----------------+-----+------+----------+--------
o3o   .   x3/2*b    4 |    6 |   0    4 | 600   *
. o3/2o5/2x3/2*b   20 |   60 |  12   20 |   * 120

o3o3/2o5/3x3*b

. .   .   .    | 600    12 |   6   12 |   4   4
---------------+-----+------+----------+--------
. .   .   x    |   2 | 3600 |   1    2 |   1   2
---------------+-----+------+----------+--------
. .   o5/3x    |   5 |    5 | 720    * |   0   2
. o   .   x3*b |   3 |    3 |   * 2400 |   1   1
---------------+-----+------+----------+--------
o3o   .   x3*b    4 |    6 |   0    4 | 600   *
. o3/2o5/3x3*b   20 |   60 |  12   20 |   * 120

o3/2o3o5/2x3*b

.   . .   .    | 600    12 |   6   12 |   4   4
---------------+-----+------+----------+--------
.   . .   x    |   2 | 3600 |   1    2 |   1   2
---------------+-----+------+----------+--------
.   . o5/2x    |   5 |    5 | 720    * |   0   2
.   o .   x3*b |   3 |    3 |   * 2400 |   1   1
---------------+-----+------+----------+--------
o3/2o .   x3*b    4 |    6 |   0    4 | 600   *
.   o3o5/2x3*b   20 |   60 |  12   20 |   * 120

o3/2o3o5/3x3/2*b

.   . .   .      | 600    12 |   6   12 |   4   4
-----------------+-----+------+----------+--------
.   . .   x      |   2 | 3600 |   1    2 |   1   2
-----------------+-----+------+----------+--------
.   . o5/3x      |   5 |    5 | 720    * |   0   2
.   o .   x3/2*b |   3 |    3 |   * 2400 |   1   1
-----------------+-----+------+----------+--------
o3/2o .   x3/2*b    4 |    6 |   0    4 | 600   *
.   o3o5/3x3/2*b   20 |   60 |  12   20 |   * 120

o3/2o3/2o5/2x3/2*b

.   .   .   .      | 600    12 |   6   12 |   4   4
-------------------+-----+------+----------+--------
.   .   .   x      |   2 | 3600 |   1    2 |   1   2
-------------------+-----+------+----------+--------
.   .   o5/2x      |   5 |    5 | 720    * |   0   2
.   o   .   x3/2*b |   3 |    3 |   * 2400 |   1   1
-------------------+-----+------+----------+--------
o3/2o   .   x3/2*b    4 |    6 |   0    4 | 600   *
.   o3/2o5/2x3/2*b   20 |   60 |  12   20 |   * 120

o3/2o3/2o5/3x3*b

.   .   .   .    | 600    12 |   6   12 |   4   4
-----------------+-----+------+----------+--------
.   .   .   x    |   2 | 3600 |   1    2 |   1   2
-----------------+-----+------+----------+--------
.   .   o5/3x    |   5 |    5 | 720    * |   0   2
.   o   .   x3*b |   3 |    3 |   * 2400 |   1   1
-----------------+-----+------+----------+--------
o3/2o   .   x3*b    4 |    6 |   0    4 | 600   *
.   o3/2o5/3x3*b   20 |   60 |  12   20 |   * 120

o3o3o5β

both( . . . . ) | 600    12 |   6   12 |   4   4
----------------+-----+------+----------+--------
sefa( . . o5β ) |   2 | 3600 |   1    2 |   2   1
----------------+-----+------+----------+--------
      . . o5β      5 |    5 | 720    * |   2   0
sefa( . o3o5β ) |   3 |    3 |   * 2400 |   1   1
----------------+-----+------+----------+--------
      . o3o5β     20 |   60 |  12   20 | 120   *
sefa( o3o3o5β )    4 |    6 |   0    4 |   * 600

starting figure: o3o3o5x

© 2004-2025
top of page