Acronym sidtaxhi
Name small ditetrahedronary hexacosihecatonicosachoron
Cross sections
 ©
Circumradius sqrt[3+sqrt(5)] = 2.288246
General of army hi
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: dip ditdid doe gidtid id pip saddid sidtid srid tet tigid trip
sadtap (compound) 72000000000000
siddatady 0120120000000000
sefradit thix (exotic) 01200000120006001200
sradditdahix 012000001200060000
sedit pathi (exotic) 00120120072000120000
sidtaxady 001201200000060000
sirdtaxady 001200120000060000
saquid paxhi (fissary) 001200072000060001200
sefidtethi (exotic) 00120000120120001200
sand tathi 001200001201200000
sirdtapady 0012000000120001200
sirdatady 0001201200000000
sadtef pixady (exotic) 000120000012060001200
sadtifady (fissary) 0000120012000000
siddit paxhi 000007200012060000
sidtaxhi 0000000120060000
sitphi (fissary) 00000000001200
& others)
External
links
hedrondude   WikiChoron  

As abstract polytope sidtaxhi is isomorphic to gadtaxhi, thereby replacing pentagrams by pentagons, resp. sidtid by gidtid.


Incidence matrix according to Dynkin symbol

o3o3o5/2x3*b

. . .   .    | 600    12 |   6   12 |   4   4
-------------+-----+------+----------+--------
. . .   x    |   2 | 3600 |   1    2 |   1   2
-------------+-----+------+----------+--------
. . o5/2x    |   5 |    5 | 720    * |   0   2
. o .   x3*b |   3 |    3 |   * 2400 |   1   1
-------------+-----+------+----------+--------
o3o .   x3*b    4 |    6 |   0    4 | 600   *
. o3o5/2x3*b   20 |   60 |  12   20 |   * 120

o3o3o5/3x3/2*b

. . .   .      | 600    12 |   6   12 |   4   4
---------------+-----+------+----------+--------
. . .   x      |   2 | 3600 |   1    2 |   1   2
---------------+-----+------+----------+--------
. . o5/3x      |   5 |    5 | 720    * |   0   2
. o .   x3/2*b |   3 |    3 |   * 2400 |   1   1
---------------+-----+------+----------+--------
o3o .   x3/2*b    4 |    6 |   0    4 | 600   *
. o3o5/3x3/2*b   20 |   60 |  12   20 |   * 120

o3o3/2o5/2x3/2*b

. .   .   .      | 600    12 |   6   12 |   4   4
-----------------+-----+------+----------+--------
. .   .   x      |   2 | 3600 |   1    2 |   1   2
-----------------+-----+------+----------+--------
. .   o5/2x      |   5 |    5 | 720    * |   0   2
. o   .   x3/2*b |   3 |    3 |   * 2400 |   1   1
-----------------+-----+------+----------+--------
o3o   .   x3/2*b    4 |    6 |   0    4 | 600   *
. o3/2o5/2x3/2*b   20 |   60 |  12   20 |   * 120

o3o3/2o5/3x3*b

. .   .   .    | 600    12 |   6   12 |   4   4
---------------+-----+------+----------+--------
. .   .   x    |   2 | 3600 |   1    2 |   1   2
---------------+-----+------+----------+--------
. .   o5/3x    |   5 |    5 | 720    * |   0   2
. o   .   x3*b |   3 |    3 |   * 2400 |   1   1
---------------+-----+------+----------+--------
o3o   .   x3*b    4 |    6 |   0    4 | 600   *
. o3/2o5/3x3*b   20 |   60 |  12   20 |   * 120

o3/2o3o5/2x3*b

.   . .   .    | 600    12 |   6   12 |   4   4
---------------+-----+------+----------+--------
.   . .   x    |   2 | 3600 |   1    2 |   1   2
---------------+-----+------+----------+--------
.   . o5/2x    |   5 |    5 | 720    * |   0   2
.   o .   x3*b |   3 |    3 |   * 2400 |   1   1
---------------+-----+------+----------+--------
o3/2o .   x3*b    4 |    6 |   0    4 | 600   *
.   o3o5/2x3*b   20 |   60 |  12   20 |   * 120

o3/2o3o5/3x3/2*b

.   . .   .      | 600    12 |   6   12 |   4   4
-----------------+-----+------+----------+--------
.   . .   x      |   2 | 3600 |   1    2 |   1   2
-----------------+-----+------+----------+--------
.   . o5/3x      |   5 |    5 | 720    * |   0   2
.   o .   x3/2*b |   3 |    3 |   * 2400 |   1   1
-----------------+-----+------+----------+--------
o3/2o .   x3/2*b    4 |    6 |   0    4 | 600   *
.   o3o5/3x3/2*b   20 |   60 |  12   20 |   * 120

o3/2o3/2o5/2x3/2*b

.   .   .   .      | 600    12 |   6   12 |   4   4
-------------------+-----+------+----------+--------
.   .   .   x      |   2 | 3600 |   1    2 |   1   2
-------------------+-----+------+----------+--------
.   .   o5/2x      |   5 |    5 | 720    * |   0   2
.   o   .   x3/2*b |   3 |    3 |   * 2400 |   1   1
-------------------+-----+------+----------+--------
o3/2o   .   x3/2*b    4 |    6 |   0    4 | 600   *
.   o3/2o5/2x3/2*b   20 |   60 |  12   20 |   * 120

o3/2o3/2o5/3x3*b

.   .   .   .    | 600    12 |   6   12 |   4   4
-----------------+-----+------+----------+--------
.   .   .   x    |   2 | 3600 |   1    2 |   1   2
-----------------+-----+------+----------+--------
.   .   o5/3x    |   5 |    5 | 720    * |   0   2
.   o   .   x3*b |   3 |    3 |   * 2400 |   1   1
-----------------+-----+------+----------+--------
o3/2o   .   x3*b    4 |    6 |   0    4 | 600   *
.   o3/2o5/3x3*b   20 |   60 |  12   20 |   * 120

o3o3o5β

both( . . . . ) | 600    12 |   6   12 |   4   4
----------------+-----+------+----------+--------
sefa( . . o5β ) |   2 | 3600 |   1    2 |   2   1
----------------+-----+------+----------+--------
      . . o5β      5 |    5 | 720    * |   2   0
sefa( . o3o5β ) |   3 |    3 |   * 2400 |   1   1
----------------+-----+------+----------+--------
      . o3o5β     20 |   60 |  12   20 | 120   *
sefa( o3o3o5β )    4 |    6 |   0    4 |   * 600

starting figure: o3o3o5x

© 2004-2019
top of page