Acronym sicdatrid Name small complex (ditrigonary) rhombicosidodecahedron Circumradius sqrt(3)/2 = 0.866025 Vertex figure 3[5/2,4,3,4] General of army doe Colonel of regiment sidtid

As abstract polytope sicdatrid is isomorphic to gicdatrid, thereby replacing pentagrams by pentagons.

Looks like a compound of a small ditrigonal icosidodecahedron (sidtid) plus a rhombihedron (rhom, the compound of 5 cubes), and indeed vertices coincide by three, edges coincide by pairs.

Incidence matrix according to Dynkin symbol

```x5/2o3x

.   . . | 60 |  2  2 |  1  2  1
--------+----+-------+---------
x   . . |  2 | 60  * |  1  1  0
.   . x |  2 |  * 60 |  0  1  1
--------+----+-------+---------
x5/2o . |  5 |  5  0 | 12  *  *
x   . x |  4 |  2  2 |  * 30  *
.   o3x |  3 |  0  3 |  *  * 20
```

```x3/2o5/3x

.   .   . | 60 |  2  2 |  1  2  1
----------+----+-------+---------
x   .   . |  2 | 60  * |  1  1  0
.   .   x |  2 |  * 60 |  0  1  1
----------+----+-------+---------
x3/2o   . |  3 |  3  0 | 20  *  *
x   .   x |  4 |  2  2 |  * 30  *
.   o5/3x |  5 |  0  5 |  *  * 12
```

```as uniform compound (type A)

20 |  6  6 |  3  6  3 || 1 2
-----+-------+----------++----
2 | 60  * |  1  0  1 || 1 0
2 |  * 60 |  0  2  0 || 0 1
-----+-------+----------++----
3 |  3  0 | 20  *  * || 1 0
4 |  0  4 |  * 30  * || 0 1
5 |  5  0 |  *  * 12 || 1 0
-----+-------+----------++----
♦ 20 | 60  0 | 20  0 12 || 1 *
♦  8 |  0 12 |  0  6  0 || * 5
```

```as uniform compound (type B)

20 |  6  6 |  3  6  3 || 1 1
-----+-------+----------++----
2 | 60  * |  1  0  1 || 1 0
2 |  * 60 |  0  2  0 || 0 1
-----+-------+----------++----
3 |  3  0 | 20  *  * || 1 0
4 |  0  4 |  * 30  * || 0 1
5 |  5  0 |  *  * 12 || 1 0
-----+-------+----------++----
♦ 20 | 60  0 | 20  0 12 || 1 *
♦ 20 |  0 60 |  0 30  0 || * 1
```