Acronym gofix
Name great icosahedral hecatonicosachoron,
great faceted hexacosichoron
Cross sections
 ©
Circumradius (sqrt(5)-1)/2 = 0.618034
Inradius (3-sqrt(5))/4 = 0.190983
General of army ex
Colonel of regiment gishi
Dual gaghi
Dihedral angles
  • at {3} between gike and gike:   120°
Confer
Grünbaumian relatives:
gax+gofix   gofix+gishi+120gid   2gofix  
decompositions:
gaghi || gofix  
general polytopal classes:
regular   noble polytopes  
External
links
hedrondude   wikipedia   WikiChoron   nan ma

As abstract polytope gofix is isomorphic to fix, thereby replacing gike by ike, resp. replacing pentagonal edge figures by pentagrammal ones, resp. replacing sissid vertex figures by gad ones.

If considered with according densities, then gofix can be thought of as the external blend of 1 gaghi + 120 gadpies + 720 pescs + 1200 pens + 120 gikepies. This decomposition is described as the degenerate segmentoteron xo5oo5/2oo3ox&#x.


Incidence matrix according to Dynkin symbol

x3o5/2o5o

. .   . . | 120   12 |   30 |  12
----------+-----+-----+------+----
x .   . . |   2 | 720 |    5 |   5
----------+-----+-----+------+----
x3o   . . |   3 |   3 | 1200 |   2
----------+-----+-----+------+----
x3o5/2o .   12 |  30 |   20 | 120

x3o5/2o5/4o

. .   .   . | 120   12 |   30 |  12
------------+-----+-----+------+----
x .   .   . |   2 | 720 |    5 |   5
------------+-----+-----+------+----
x3o   .   . |   3 |   3 | 1200 |   2
------------+-----+-----+------+----
x3o5/2o   .   12 |  30 |   20 | 120

x3o5/3o5o

. .   . . | 120   12 |   30 |  12
----------+-----+-----+------+----
x .   . . |   2 | 720 |    5 |   5
----------+-----+-----+------+----
x3o   . . |   3 |   3 | 1200 |   2
----------+-----+-----+------+----
x3o5/3o .   12 |  30 |   20 | 120

x3o5/3o5/4o

. .   .   . | 120   12 |   30 |  12
------------+-----+-----+------+----
x .   .   . |   2 | 720 |    5 |   5
------------+-----+-----+------+----
x3o   .   . |   3 |   3 | 1200 |   2
------------+-----+-----+------+----
x3o5/3o   .   12 |  30 |   20 | 120

x3/2o5/2o5o

.   .   . . | 120   12 |   30 |  12
------------+-----+-----+------+----
x   .   . . |   2 | 720 |    5 |   5
------------+-----+-----+------+----
x3/2o   . . |   3 |   3 | 1200 |   2
------------+-----+-----+------+----
x3/2o5/2o .   12 |  30 |   20 | 120

x3/2o5/2o5/4o

.   .   .   . | 120   12 |   30 |  12
--------------+-----+-----+------+----
x   .   .   . |   2 | 720 |    5 |   5
--------------+-----+-----+------+----
x3/2o   .   . |   3 |   3 | 1200 |   2
--------------+-----+-----+------+----
x3/2o5/2o   .   12 |  30 |   20 | 120

x3/2o5/3o5o

.   .   . . | 120   12 |   30 |  12
------------+-----+-----+------+----
x   .   . . |   2 | 720 |    5 |   5
------------+-----+-----+------+----
x3/2o   . . |   3 |   3 | 1200 |   2
------------+-----+-----+------+----
x3/2o5/3o .   12 |  30 |   20 | 120

x3/2o5/3o5/4o

.   .   .   . | 120   12 |   30 |  12
--------------+-----+-----+------+----
x   .   .   . |   2 | 720 |    5 |   5
--------------+-----+-----+------+----
x3/2o   .   . |   3 |   3 | 1200 |   2
--------------+-----+-----+------+----
x3/2o5/3o   .   12 |  30 |   20 | 120

© 2004-2019
top of page