Acronym gofix, gpI Name great icosahedral hecatonicosachoron,great faceted hexacosichoron,greatened polyicosahedron Cross sections ` ©` Circumradius (sqrt(5)-1)/2 = 0.618034 Inradius (3-sqrt(5))/4 = 0.190983 Density 76 General of army ex Colonel of regiment gishi Dual gaghi Dihedral angles at {3} between gike and gike:   120° Confer Grünbaumian relatives: gax+gofix   gofix+gishi+120gid   2gofix   decompositions: gaghi || gofix   related segmentochora: sissidpy   general polytopal classes: regular   noble polytopes Externallinks

As abstract polytope gofix is isomorphic to fix, thereby replacing gike by ike, resp. replacing pentagonal edge figures by pentagrammal ones, resp. replacing sissid vertex figures by gad ones.

Its vertex pyramid is a unit sissidpy.

If considered with according densities, then gofix can be thought of as the external blend of 1 gaghi + 120 gadpies + 720 pescs + 1200 pens + 120 gikepies. This decomposition is described as the degenerate segmentoteron xo5oo5/2oo3ox&#x.

Incidence matrix according to Dynkin symbol

```x3o5/2o5o

. .   . . | 120 ♦  12 |   30 |  12
----------+-----+-----+------+----
x .   . . |   2 | 720 |    5 |   5
----------+-----+-----+------+----
x3o   . . |   3 |   3 | 1200 |   2
----------+-----+-----+------+----
x3o5/2o . ♦  12 |  30 |   20 | 120
```

```x3o5/2o5/4o

. .   .   . | 120 ♦  12 |   30 |  12
------------+-----+-----+------+----
x .   .   . |   2 | 720 |    5 |   5
------------+-----+-----+------+----
x3o   .   . |   3 |   3 | 1200 |   2
------------+-----+-----+------+----
x3o5/2o   . ♦  12 |  30 |   20 | 120
```

```x3o5/3o5o

. .   . . | 120 ♦  12 |   30 |  12
----------+-----+-----+------+----
x .   . . |   2 | 720 |    5 |   5
----------+-----+-----+------+----
x3o   . . |   3 |   3 | 1200 |   2
----------+-----+-----+------+----
x3o5/3o . ♦  12 |  30 |   20 | 120
```

```x3o5/3o5/4o

. .   .   . | 120 ♦  12 |   30 |  12
------------+-----+-----+------+----
x .   .   . |   2 | 720 |    5 |   5
------------+-----+-----+------+----
x3o   .   . |   3 |   3 | 1200 |   2
------------+-----+-----+------+----
x3o5/3o   . ♦  12 |  30 |   20 | 120
```

```x3/2o5/2o5o

.   .   . . | 120 ♦  12 |   30 |  12
------------+-----+-----+------+----
x   .   . . |   2 | 720 |    5 |   5
------------+-----+-----+------+----
x3/2o   . . |   3 |   3 | 1200 |   2
------------+-----+-----+------+----
x3/2o5/2o . ♦  12 |  30 |   20 | 120
```

```x3/2o5/2o5/4o

.   .   .   . | 120 ♦  12 |   30 |  12
--------------+-----+-----+------+----
x   .   .   . |   2 | 720 |    5 |   5
--------------+-----+-----+------+----
x3/2o   .   . |   3 |   3 | 1200 |   2
--------------+-----+-----+------+----
x3/2o5/2o   . ♦  12 |  30 |   20 | 120
```

```x3/2o5/3o5o

.   .   . . | 120 ♦  12 |   30 |  12
------------+-----+-----+------+----
x   .   . . |   2 | 720 |    5 |   5
------------+-----+-----+------+----
x3/2o   . . |   3 |   3 | 1200 |   2
------------+-----+-----+------+----
x3/2o5/3o . ♦  12 |  30 |   20 | 120
```

```x3/2o5/3o5/4o

.   .   .   . | 120 ♦  12 |   30 |  12
--------------+-----+-----+------+----
x   .   .   . |   2 | 720 |    5 |   5
--------------+-----+-----+------+----
x3/2o   .   . |   3 |   3 | 1200 |   2
--------------+-----+-----+------+----
x3/2o5/3o   . ♦  12 |  30 |   20 | 120
```