Acronym | firp |
Name |
faceted rectified pentachoron, retropyrohemiperichoron, vertex figure of dah, tetrahedral cuploid |
Cross sections |
© |
Circumradius | sqrt(3/5) = 0.774597 |
Inradius wrt. tet | -3/sqrt(40) = -0.474342 |
Inradius wrt. trip | 1/sqrt(60) = 0.129099 |
Volume | sqrt(5)/32 = 0.069877 |
Surface | [5 sqrt(2)+30 sqrt(3)]/12 = 4.919383 |
General of army | rap |
Colonel of regiment | rap |
Dihedral angles
(at margins) | |
Face vector | 10, 30, 35, 15 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
hemi( x3o3o3/2x ) 10 ♦ 6 | 6 6 | 2 6 ----+----+-------+----- 2 | 30 | 2 2 | 1 3 ----+----+-------+----- 3 | 3 | 20 * | 1 1 4 | 4 | * 15 | 0 2 ----+----+-------+----- ♦ 4 | 6 | 4 0 | 5 * ♦ 6 | 9 | 2 3 | * 10
reduced( xx3/2oo3ox&#x , by x3/2o3x) → height = sqrt(5/8) = 0.790569
tet || pseudo 2thah
o.3/2o.3o. | 4 * ♦ 3 3 0 | 3 6 3 0 0 | 1 3 3 1
.o3/2.o3.o | * 6 ♦ 0 2 4 | 0 4 4 2 2 | 0 2 4 2
-----------------------------+-----+---------+-------------+--------
x. .. .. | 2 0 | 6 * * | 2 2 0 0 0 | 1 2 1 0
oo3/2oo3oo&#x | 1 1 | * 12 * | 0 2 2 0 0 | 0 1 2 1
.x .. .. & .. .. .x | 0 2 | * * 12 | 0 1 1 1 1 | 0 1 2 1
-----------------------------+-----+---------+-------------+--------
x.3/2o. .. | 3 0 | 3 0 0 | 4 * * * * | 1 1 0 0
xx .. ..&#x | 2 2 | 1 2 1 | * 12 * * * | 0 1 1 0
.. .. ox&#x | 1 2 | 0 2 1 | * * 12 * * | 0 0 1 1
.x3/2.o .. & .. .o3.x | 0 3 | 0 0 3 | * * * 4 * | 0 1 0 1
.x .. .x | 0 4 | 0 0 4 | * * * * 3 | 0 0 2 0
-----------------------------+-----+---------+-------------+--------
x.3/2o.3o. ♦ 4 0 | 6 0 0 | 4 0 0 0 0 | 1 * * *
xx3/2oo ..&#x ♦ 3 3 | 3 3 3 | 1 3 0 1 0 | * 4 * *
xx .. ox&#x ♦ 2 4 | 1 4 4 | 0 2 2 0 1 | * * 6 *
.. oo3ox&#x ♦ 1 3 | 0 3 3 | 0 0 3 1 0 | * * * 4
reduced( ox3/2oo3xx&#x , by x3/2o3x) → height = sqrt(5/8) = 0.790569
tet || pseudo 2thah
o.3/2o.3o. | 4 * ♦ 3 3 0 | 3 3 6 0 0 | 1 1 3 3
.o3/2.o3.o | * 6 ♦ 0 2 4 | 0 4 4 2 2 | 0 2 4 2
-----------------------------+-----+---------+-------------+--------
.. .. x. | 2 0 | 6 * * | 2 0 2 0 0 | 1 0 1 2
oo3/2oo3oo&#x | 1 1 | * 12 * | 0 2 2 0 0 | 0 1 2 1
.x .. .. & .. .. .x | 0 2 | * * 12 | 0 1 1 1 1 | 0 1 2 1
-----------------------------+-----+---------+-------------+--------
.. o.3x. | 3 0 | 3 0 0 | 4 * * * * | 1 0 0 1
ox .. ..&#x | 1 2 | 0 2 1 | * 12 * * * | 0 1 1 0
.. .. xx&#x | 2 2 | 1 2 1 | * * 12 * * | 0 0 1 1
.x3/2.o .. & .. .o3.x | 0 3 | 0 0 3 | * * * 4 * | 0 1 0 1
.x .. .x | 0 4 | 0 0 4 | * * * * 3 | 0 0 2 0
-----------------------------+-----+---------+-------------+--------
o.3/2o.3x. ♦ 4 0 | 6 0 0 | 4 0 0 0 0 | 1 * * *
ox3/2oo ..&#x ♦ 1 3 | 0 3 3 | 0 3 0 1 0 | * 4 * *
ox .. xx&#x ♦ 2 4 | 1 4 4 | 0 2 2 0 1 | * * 6 *
.. oo3xx&#x ♦ 3 3 | 3 3 3 | 1 0 3 1 0 | * * * 4
© 2004-2024 | top of page |