Acronym tettepe
Name tetrahedron-tetrahedron duoprismatic prism,
vertex figure of 03,3,1
Circumradius 1
Volume 1/72 = 0.013889
Face vector 32, 112, 184, 180, 112, 44, 10
Confer
general polytopal classes:
Wythoffian polyexa   segmentoexa  

Incidence matrix according to Dynkin symbol

x x3o3o x3o3o

. . . . . . . | 32 |  1  3  3 |  3  3  3  9  3 |  3  9  3 1  9  9 1 | 1  9  9 1  3  9  3 | 3  9 3 3 3 | 3 3 1
--------------+----+----------+----------------+--------------------+--------------------+------------+------
x . . . . . . |  2 | 16  *  * |  3  3  0  0  0 |  3  9  3 0  0  0 0 | 1  9  9 1  0  0  0 | 3  9 3 0 0 | 3 3 0
. x . . . . . |  2 |  * 48  * |  1  0  2  3  0 |  2  3  0 1  6  3 0 | 1  6  3 0  3  6  1 | 3  6 1 3 2 | 3 2 1
. . . . x . . |  2 |  *  * 48 |  0  1  0  3  2 |  0  3  2 0  3  6 1 | 0  3  6 1  1  6  3 | 1  6 3 2 3 | 2 3 1
--------------+----+----------+----------------+--------------------+--------------------+------------+------
x x . . . . . |  4 |  2  2  0 | 24  *  *  *  * |  2  3  0 0  0  0 0 | 1  6  3 0  0  0  0 | 3  6 1 0 0 | 3 2 0
x . . . x . . |  4 |  2  0  2 |  * 24  *  *  * |  0  3  2 0  0  0 0 | 0  3  6 1  0  0  0 | 1  6 3 0 0 | 2 3 0
. x3o . . . . |  3 |  0  3  0 |  *  * 32  *  * |  1  0  0 1  3  0 0 | 1  3  0 0  3  3  0 | 3  3 0 3 1 | 3 1 1
. x . . x . . |  4 |  0  2  2 |  *  *  * 72  * |  0  1  0 0  2  2 0 | 0  2  2 0  1  4  1 | 1  4 1 2 2 | 2 2 1
. . . . x3o . |  3 |  0  0  3 |  *  *  *  * 32 |  0  0  1 0  0  3 1 | 0  0  3 1  0  3  3 | 0  3 3 1 3 | 1 3 1
--------------+----+----------+----------------+--------------------+--------------------+------------+------
x x3o . . . .   6 |  3  6  0 |  3  0  2  0  0 | 16  *  * *  *  * * | 1  3  0 0  0  0  0 | 3  3 0 0 0 | 3 1 0
x x . . x . .   8 |  4  4  4 |  2  2  0  2  0 |  * 36  * *  *  * * | 0  2  2 0  0  0  0 | 1  4 1 0 0 | 2 2 0
x . . . x3o .   6 |  3  0  6 |  0  3  0  0  2 |  *  * 16 *  *  * * | 0  0  3 1  0  0  0 | 0  3 3 0 0 | 1 3 0
. x3o3o . . .   4 |  0  6  0 |  0  0  4  0  0 |  *  *  * 8  *  * * | 1  0  0 0  3  0  0 | 3  0 0 3 0 | 3 0 1
. x3o . x . .   6 |  0  6  3 |  0  0  2  3  0 |  *  *  * * 48  * * | 0  1  0 0  1  2  0 | 1  2 0 2 1 | 2 1 1
. x . . x3o .   6 |  0  3  6 |  0  0  0  3  2 |  *  *  * *  * 48 * | 0  0  1 0  0  2  1 | 0  2 1 1 2 | 1 2 1
. . . . x3o3o   4 |  0  0  6 |  0  0  0  0  4 |  *  *  * *  *  * 8 | 0  0  0 1  0  0  3 | 0  0 3 0 3 | 0 3 1
--------------+----+----------+----------------+--------------------+--------------------+------------+------
x x3o3o . . .   8 |  4 12  0 |  6  0  8  0  0 |  4  0  0 2  0  0 0 | 4  *  * *  *  *  * | 3  0 0 0 0 | 3 0 0
x x3o . x . .  12 |  6 12  6 |  6  3  4  6  0 |  2  3  0 0  2  0 0 | * 24  * *  *  *  * | 1  2 0 0 0 | 2 1 0
x x . . x3o .  12 |  6  6 12 |  3  6  0  6  4 |  0  3  2 0  0  2 0 | *  * 24 *  *  *  * | 0  2 1 0 0 | 1 2 0
x . . . x3o3o   8 |  4  0 12 |  0  6  0  0  8 |  0  0  4 0  0  0 2 | *  *  * 4  *  *  * | 0  0 3 0 0 | 0 3 0
. x3o3o x . .   8 |  0 12  4 |  0  0  8  6  0 |  0  0  0 2  4  0 0 | *  *  * * 12  *  * | 1  0 0 2 0 | 2 0 1
. x3o . x3o .   9 |  0  9  9 |  0  0  3  9  3 |  0  0  0 0  3  3 0 | *  *  * *  * 32  * | 0  1 0 1 1 | 1 1 1
. x . . x3o3o   8 |  0  4 12 |  0  0  0  6  8 |  0  0  0 0  0  4 2 | *  *  * *  *  * 12 | 0  0 1 0 2 | 0 2 1
--------------+----+----------+----------------+--------------------+--------------------+------------+------
x x3o3o x . .  16 |  8 24  8 | 12  4 16 12  0 |  8  6  0 4  8  0 0 | 2  4  0 0  2  0  0 | 6  * * * * | 2 0 0
x x3o . x3o .  18 |  9 18 18 |  9  9  6 18  6 |  3  9  3 0  6  6 0 | 0  3  3 0  0  2  0 | * 16 * * * | 1 1 0
x x . . x3o3o  16 |  8  0 24 |  4 12  0 12 16 |  0  6  8 0  0  8 4 | 0  0  4 2  0  0  2 | *  * 6 * * | 0 2 0
. x3o3o x3o .  12 |  0 18 12 |  0  0 12 18  4 |  0  0  0 3 12  6 0 | 0  0  0 0  3  4  0 | *  * * 8 * | 1 0 1
. x3o . x3o3o  12 |  0 12 18 |  0  0  4 18 12 |  0  0  0 0  6 12 3 | 0  0  0 0  0  4  3 | *  * * * 8 | 0 1 1
--------------+----+----------+----------------+--------------------+--------------------+------------+------
x x3o3o x3o .  24 | 12 36 24 | 18 12 24 36  8 | 12 18  4 6 24 12 0 | 3 12  6 0  6  8  0 | 3  4 0 2 0 | 4 * *
x x3o . x3o3o  24 | 12 24 36 | 12 18  8 36 24 |  4 18 12 0 12 24 6 | 0  6 12 3  0  8  6 | 0  4 3 0 2 | * 4 *
. x3o3o x3o3o  16 |  0 24 24 |  0  0 16 36 16 |  0  0  0 4 24 24 4 | 0  0  0 0  6 16  6 | 0  0 0 4 4 | * * 2
or
. . . . . . .    | 32 |  1  6 |  6  6  9 |  6  9  2 18 | 2 18  6  9 |  6  9  6 | 6 1
-----------------+----+-------+----------+-------------+------------+----------+----
x . . . . . .    |  2 | 16  * |  6  0  0 |  6  9  0  0 | 2 18  0  0 |  6  9  0 | 6 0
. x . . . . .  & |  2 |  * 96 |  1  2  3 |  2  3  1  9 | 1  9  4  6 |  4  6  5 | 5 1
-----------------+----+-------+----------+-------------+------------+----------+----
x x . . . . .  & |  4 |  2  2 | 48  *  * |  2  3  0  0 | 1  9  0  0 |  4  6  0 | 5 0
. x3o . . . .  & |  3 |  0  3 |  * 64  * |  1  0  1  3 | 1  3  3  3 |  3  3  4 | 4 1
. x . . x . .    |  4 |  0  4 |  *  * 72 |  0  1  0  4 | 0  4  2  4 |  2  4  4 | 4 1
-----------------+----+-------+----------+-------------+------------+----------+----
x x3o . . . .  &   6 |  3  6 |  3  2  0 | 32  *  *  * | 1  3  0  0 |  3  3  0 | 4 0
x x . . x . .      8 |  4  8 |  4  0  2 |  * 36  *  * | 0  4  0  0 |  2  4  0 | 4 0
. x3o3o . . .  &   4 |  0  6 |  0  4  0 |  *  * 16  * | 1  0  3  0 |  3  0  3 | 3 1
. x3o . x . .  &   6 |  0  9 |  0  2  3 |  *  *  * 96 | 0  1  1  2 |  1  2  3 | 3 1
-----------------+----+-------+----------+-------------+------------+----------+----
x x3o3o . . .  &   8 |  4 12 |  6  8  0 |  4  0  2  0 | 8  *  *  * |  3  0  0 | 3 0
x x3o . x . .  &  12 |  6 18 |  9  4  6 |  2  3  0  2 | * 48  *  * |  1  2  0 | 3 0
. x3o3o x . .  &   8 |  0 16 |  0  8  6 |  0  0  2  4 | *  * 24  * |  1  0  2 | 2 1
. x3o . x3o .      9 |  0 18 |  0  6  9 |  0  0  0  6 | *  *  * 32 |  0  1  2 | 2 1
-----------------+----+-------+----------+-------------+------------+----------+----
x x3o3o x . .  &  16 |  8 32 | 16 16 12 |  8  6  4  8 | 2  4  2  0 | 12  *  * | 2 0
x x3o . x3o .     18 |  9 36 | 18 12 18 |  6  9  0 12 | 0  6  0  2 |  * 16  * | 2 0
. x3o3o x3o .  &  12 |  0 30 |  0 16 18 |  0  0  3 18 | 0  0  3  4 |  *  * 16 | 1 1
-----------------+----+-------+----------+-------------+------------+----------+----
x x3o3o x3o .  &  24 | 12 60 | 30 32 36 | 16 18  6 36 | 3 18  6  8 |  3  4  2 | 8 *
. x3o3o x3o3o     16 |  0 48 |  0 32 36 |  0  0  8 48 | 0  0 12 16 |  0  0  8 | * 2

© 2004-2025
top of page