Acronym | tettepe |
Name |
tetrahedron-tetrahedron duoprismatic prism, vertex figure of 03,3,1 |
Circumradius | 1 |
Volume | 1/72 = 0.013889 |
Face vector | 32, 112, 184, 180, 112, 44, 10 |
Confer |
|
Incidence matrix according to Dynkin symbol
x x3o3o x3o3o . . . . . . . | 32 | 1 3 3 | 3 3 3 9 3 | 3 9 3 1 9 9 1 | 1 9 9 1 3 9 3 | 3 9 3 3 3 | 3 3 1 --------------+----+----------+----------------+--------------------+--------------------+------------+------ x . . . . . . | 2 | 16 * * | 3 3 0 0 0 | 3 9 3 0 0 0 0 | 1 9 9 1 0 0 0 | 3 9 3 0 0 | 3 3 0 . x . . . . . | 2 | * 48 * | 1 0 2 3 0 | 2 3 0 1 6 3 0 | 1 6 3 0 3 6 1 | 3 6 1 3 2 | 3 2 1 . . . . x . . | 2 | * * 48 | 0 1 0 3 2 | 0 3 2 0 3 6 1 | 0 3 6 1 1 6 3 | 1 6 3 2 3 | 2 3 1 --------------+----+----------+----------------+--------------------+--------------------+------------+------ x x . . . . . | 4 | 2 2 0 | 24 * * * * | 2 3 0 0 0 0 0 | 1 6 3 0 0 0 0 | 3 6 1 0 0 | 3 2 0 x . . . x . . | 4 | 2 0 2 | * 24 * * * | 0 3 2 0 0 0 0 | 0 3 6 1 0 0 0 | 1 6 3 0 0 | 2 3 0 . x3o . . . . | 3 | 0 3 0 | * * 32 * * | 1 0 0 1 3 0 0 | 1 3 0 0 3 3 0 | 3 3 0 3 1 | 3 1 1 . x . . x . . | 4 | 0 2 2 | * * * 72 * | 0 1 0 0 2 2 0 | 0 2 2 0 1 4 1 | 1 4 1 2 2 | 2 2 1 . . . . x3o . | 3 | 0 0 3 | * * * * 32 | 0 0 1 0 0 3 1 | 0 0 3 1 0 3 3 | 0 3 3 1 3 | 1 3 1 --------------+----+----------+----------------+--------------------+--------------------+------------+------ x x3o . . . . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 16 * * * * * * | 1 3 0 0 0 0 0 | 3 3 0 0 0 | 3 1 0 x x . . x . . ♦ 8 | 4 4 4 | 2 2 0 2 0 | * 36 * * * * * | 0 2 2 0 0 0 0 | 1 4 1 0 0 | 2 2 0 x . . . x3o . ♦ 6 | 3 0 6 | 0 3 0 0 2 | * * 16 * * * * | 0 0 3 1 0 0 0 | 0 3 3 0 0 | 1 3 0 . x3o3o . . . ♦ 4 | 0 6 0 | 0 0 4 0 0 | * * * 8 * * * | 1 0 0 0 3 0 0 | 3 0 0 3 0 | 3 0 1 . x3o . x . . ♦ 6 | 0 6 3 | 0 0 2 3 0 | * * * * 48 * * | 0 1 0 0 1 2 0 | 1 2 0 2 1 | 2 1 1 . x . . x3o . ♦ 6 | 0 3 6 | 0 0 0 3 2 | * * * * * 48 * | 0 0 1 0 0 2 1 | 0 2 1 1 2 | 1 2 1 . . . . x3o3o ♦ 4 | 0 0 6 | 0 0 0 0 4 | * * * * * * 8 | 0 0 0 1 0 0 3 | 0 0 3 0 3 | 0 3 1 --------------+----+----------+----------------+--------------------+--------------------+------------+------ x x3o3o . . . ♦ 8 | 4 12 0 | 6 0 8 0 0 | 4 0 0 2 0 0 0 | 4 * * * * * * | 3 0 0 0 0 | 3 0 0 x x3o . x . . ♦ 12 | 6 12 6 | 6 3 4 6 0 | 2 3 0 0 2 0 0 | * 24 * * * * * | 1 2 0 0 0 | 2 1 0 x x . . x3o . ♦ 12 | 6 6 12 | 3 6 0 6 4 | 0 3 2 0 0 2 0 | * * 24 * * * * | 0 2 1 0 0 | 1 2 0 x . . . x3o3o ♦ 8 | 4 0 12 | 0 6 0 0 8 | 0 0 4 0 0 0 2 | * * * 4 * * * | 0 0 3 0 0 | 0 3 0 . x3o3o x . . ♦ 8 | 0 12 4 | 0 0 8 6 0 | 0 0 0 2 4 0 0 | * * * * 12 * * | 1 0 0 2 0 | 2 0 1 . x3o . x3o . ♦ 9 | 0 9 9 | 0 0 3 9 3 | 0 0 0 0 3 3 0 | * * * * * 32 * | 0 1 0 1 1 | 1 1 1 . x . . x3o3o ♦ 8 | 0 4 12 | 0 0 0 6 8 | 0 0 0 0 0 4 2 | * * * * * * 12 | 0 0 1 0 2 | 0 2 1 --------------+----+----------+----------------+--------------------+--------------------+------------+------ x x3o3o x . . ♦ 16 | 8 24 8 | 12 4 16 12 0 | 8 6 0 4 8 0 0 | 2 4 0 0 2 0 0 | 6 * * * * | 2 0 0 x x3o . x3o . ♦ 18 | 9 18 18 | 9 9 6 18 6 | 3 9 3 0 6 6 0 | 0 3 3 0 0 2 0 | * 16 * * * | 1 1 0 x x . . x3o3o ♦ 16 | 8 0 24 | 4 12 0 12 16 | 0 6 8 0 0 8 4 | 0 0 4 2 0 0 2 | * * 6 * * | 0 2 0 . x3o3o x3o . ♦ 12 | 0 18 12 | 0 0 12 18 4 | 0 0 0 3 12 6 0 | 0 0 0 0 3 4 0 | * * * 8 * | 1 0 1 . x3o . x3o3o ♦ 12 | 0 12 18 | 0 0 4 18 12 | 0 0 0 0 6 12 3 | 0 0 0 0 0 4 3 | * * * * 8 | 0 1 1 --------------+----+----------+----------------+--------------------+--------------------+------------+------ x x3o3o x3o . ♦ 24 | 12 36 24 | 18 12 24 36 8 | 12 18 4 6 24 12 0 | 3 12 6 0 6 8 0 | 3 4 0 2 0 | 4 * * x x3o . x3o3o ♦ 24 | 12 24 36 | 12 18 8 36 24 | 4 18 12 0 12 24 6 | 0 6 12 3 0 8 6 | 0 4 3 0 2 | * 4 * . x3o3o x3o3o ♦ 16 | 0 24 24 | 0 0 16 36 16 | 0 0 0 4 24 24 4 | 0 0 0 0 6 16 6 | 0 0 0 4 4 | * * 2
or . . . . . . . | 32 | 1 6 | 6 6 9 | 6 9 2 18 | 2 18 6 9 | 6 9 6 | 6 1 -----------------+----+-------+----------+-------------+------------+----------+---- x . . . . . . | 2 | 16 * | 6 0 0 | 6 9 0 0 | 2 18 0 0 | 6 9 0 | 6 0 . x . . . . . & | 2 | * 96 | 1 2 3 | 2 3 1 9 | 1 9 4 6 | 4 6 5 | 5 1 -----------------+----+-------+----------+-------------+------------+----------+---- x x . . . . . & | 4 | 2 2 | 48 * * | 2 3 0 0 | 1 9 0 0 | 4 6 0 | 5 0 . x3o . . . . & | 3 | 0 3 | * 64 * | 1 0 1 3 | 1 3 3 3 | 3 3 4 | 4 1 . x . . x . . | 4 | 0 4 | * * 72 | 0 1 0 4 | 0 4 2 4 | 2 4 4 | 4 1 -----------------+----+-------+----------+-------------+------------+----------+---- x x3o . . . . & ♦ 6 | 3 6 | 3 2 0 | 32 * * * | 1 3 0 0 | 3 3 0 | 4 0 x x . . x . . ♦ 8 | 4 8 | 4 0 2 | * 36 * * | 0 4 0 0 | 2 4 0 | 4 0 . x3o3o . . . & ♦ 4 | 0 6 | 0 4 0 | * * 16 * | 1 0 3 0 | 3 0 3 | 3 1 . x3o . x . . & ♦ 6 | 0 9 | 0 2 3 | * * * 96 | 0 1 1 2 | 1 2 3 | 3 1 -----------------+----+-------+----------+-------------+------------+----------+---- x x3o3o . . . & ♦ 8 | 4 12 | 6 8 0 | 4 0 2 0 | 8 * * * | 3 0 0 | 3 0 x x3o . x . . & ♦ 12 | 6 18 | 9 4 6 | 2 3 0 2 | * 48 * * | 1 2 0 | 3 0 . x3o3o x . . & ♦ 8 | 0 16 | 0 8 6 | 0 0 2 4 | * * 24 * | 1 0 2 | 2 1 . x3o . x3o . ♦ 9 | 0 18 | 0 6 9 | 0 0 0 6 | * * * 32 | 0 1 2 | 2 1 -----------------+----+-------+----------+-------------+------------+----------+---- x x3o3o x . . & ♦ 16 | 8 32 | 16 16 12 | 8 6 4 8 | 2 4 2 0 | 12 * * | 2 0 x x3o . x3o . ♦ 18 | 9 36 | 18 12 18 | 6 9 0 12 | 0 6 0 2 | * 16 * | 2 0 . x3o3o x3o . & ♦ 12 | 0 30 | 0 16 18 | 0 0 3 18 | 0 0 3 4 | * * 16 | 1 1 -----------------+----+-------+----------+-------------+------------+----------+---- x x3o3o x3o . & ♦ 24 | 12 60 | 30 32 36 | 16 18 6 36 | 3 18 6 8 | 3 4 2 | 8 * . x3o3o x3o3o ♦ 16 | 0 48 | 0 32 36 | 0 0 8 48 | 0 0 12 16 | 0 0 8 | * 2
© 2004-2025 | top of page |