Acronym ashexah Name hyperbolic alternated order 4 hexagonal-tiling honeycomb Circumradius 1/sqrt(-6) = 0.408248 i Vertex figure ` ©` Confer related hyperbolic polytopes: x4o3x3o3*b   pex-o4o3x3o3*b   pac-x4o3x3o3*b   general polytopal classes: partial Stott expansions

This non-compact hyperbolic tesselation uses the euclidean tiling trat in the sense of an infinite horohedron as cell.

Incidence matrix according to Dynkin symbol

```o4o3x3o3*b   (N,M → ∞)

. . . .    | NM ♦   24 |  24  12 |  6  8
-----------+----+------+---------+------
. . x .    |  2 | 12NM |   2   1 |  1  2
-----------+----+------+---------+------
. o3x .    |  3 |    3 | 8NM   * |  1  1
. . x3o    |  3 |    3 |   * 4NM |  0  2
-----------+----+------+---------+------
o4o3x .    ♦  6 |   12 |   8   0 | NM  *
. o3x3o3*b ♦  M |   3M |   M   M |  * 8N
```

```o4o3o6s   (N,M → ∞)

demi( . . . . ) | NM ♦   24 |  12  24 |  8  6
----------------+----+------+---------+------
sefa( . . o6s ) |  2 | 12NM |   1   2 |  2  1
----------------+----+------+---------+------
. . o6s   |  3 |    3 | 4NM   * |  2  0
sefa( . o3o6s ) |  3 |    3 |   * 8NM |  1  1
----------------+----+------+---------+------
. o3o6s   ♦  M |   3M |   M   M | 8N  *
sefa( o4o3o6s ) ♦  6 |   12 |   0   8 |  * NM

starting figure: o4o3o6x
```

```s3s6o3o6*a   (N,M,K,L,P → ∞)

demi( . . . .    ) | NMKLP ♦     12      6      6 |      6     3     3      9      9     3     3 |    3    3    1    1     6
-------------------+-------+----------------------+----------------------------------------------+--------------------------
sefa( s3s . .    ) |     2 | 6NMKLP      *      * |      1     0     0      1      1     0     0 |    1    1    0    0     1
sefa( s . . o6*a ) |     2 |      * 3NMKLP      * |      0     1     0      0      1     1     0 |    0    1    1    0     1
sefa( . s6o .    ) |     2 |      *      * 3NMKLP |      0     0     1      1      0     0     1 |    1    0    0    1     1
-------------------+-------+----------------------+----------------------------------------------+--------------------------
s3s . .      |     3 |      3      0      0 | 2NMKLP     *     *      *      *     *     * |    1    1    0    0     0
s . . o6*a   |     3 |      0      3      0 |      * NMKLP     *      *      *     *     * |    0    1    1    0     0
. s6o .      |     3 |      0      0      3 |      *     * NMKLP      *      *     *     * |    1    0    0    1     0
sefa( s3s6o .    ) |     3 |      2      0      1 |      *     *     * 3NMKLP      *     *     * |    1    0    0    0     1
sefa( s3s . o6*a ) |     3 |      2      1      0 |      *     *     *      * 3NMKLP     *     * |    0    1    0    0     1
sefa( s . o3o6*a ) |     3 |      0      3      0 |      *     *     *      *      * NMKLP     * |    0    0    1    0     1
sefa( . s6o3o    ) |     3 |      0      0      3 |      *     *     *      *      *     * NMKLP |    0    0    0    1     1
-------------------+-------+----------------------+----------------------------------------------+--------------------------
s3s6o .      ♦    3M |     6M      0     3M |     2M     0     M     3M      0     0     0 | NKLP    *    *    *     *
s3s . o6*a   ♦    3K |     6K     3K      0 |     2K     K     0      0     3K     0     0 |    * NMLP    *    *     *
s . o3o6*a   ♦     L |      0     3L      0 |      0     L     0      0      0     L     0 |    *    * NMKP    *     *
. s6o3o      ♦     P |      0      0     3P |      0     0     P      0      0     0     P |    *    *    * NMKL     *
sefa( s3s6o3o6*a ) ♦     6 |      6      3      3 |      0     0     0      3      3     1     1 |    *    *    *    * NMKLP

starting figure: x3x6o3o6*a
```

```equal 3-coloring of edges   (N,M → ∞)

3NM |    8    8    8 |   24   4   4   4 |   6  8  verf: toe
----+----------------+------------------+-------
2 | 12NM    *    * |    2   1   0   0 |   1  2  r
2 |    * 12NM    * |    2   0   1   0 |   1  2  y
2 |    *    * 12NM |    2   0   0   1 |   1  2  b
----+----------------+------------------+-------
3 |    1    1    1 | 24NM   *   *   * |   1  1  ryb
3 |    3    0    0 |    * 4NM   *   * |   0  2  r
3 |    0    3    0 |    *   * 4NM   * |   0  2  y
3 |    0    0    3 |    *   *   * 4NM |   0  2  b
----+----------------+------------------+-------
6 |    4    4    4 |    8   0   0   0 | 3NM  *  oct
3M |   3M   3M   3M |   3M   M   M   M |   * 8N  trat
```