Acronym | hede |
Name |
demi-dekeract, Gosset polytope 17,1 |
Circumradius | sqrt(5)/2 = 1.118034 |
Inradius wrt. day | 2/sqrt(5) = 0.894427 |
Inradius wrt. henne | 1/sqrt(8) = 0.353553 |
Coordinates | (1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8)) & all even permutations, all even changes of sign |
Volume | 14173/453600 = 0.031246 |
Surface | [14165 sqrt(2)+2 sqrt(5)]/22680 = 0.883457 |
Dihedral angles
(at margins) | |
Face vector | 512, 11520, 61440, 122880, 142464, 115584, 64800, 2400, 5300, 532 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x3o3o *b3o3o3o3o3o3o3o . . . . . . . . . . | 512 ♦ 45 | 360 | 120 840 | 210 1260 | 252 1260 | 210 840 | 120 360 | 45 90 | 10 10 -----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- x . . . . . . . . . | 2 | 11520 ♦ 16 | 8 56 | 28 112 | 56 140 | 70 112 | 56 56 | 28 16 | 8 2 -----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- x3o . . . . . . . . | 3 | 3 | 61440 | 1 7 | 7 21 | 21 35 | 35 35 | 35 21 | 21 7 | 7 1 -----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- x3o3o . . . . . . . ♦ 4 | 6 | 4 | 15360 * ♦ 7 0 | 21 0 | 35 0 | 35 0 | 21 0 | 7 0 x3o . *b3o . . . . . . ♦ 4 | 6 | 4 | * 107520 | 1 6 | 6 15 | 15 20 | 20 15 | 15 6 | 6 1 -----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- x3o3o *b3o . . . . . . ♦ 8 | 24 | 32 | 8 8 | 13440 * ♦ 6 0 | 15 0 | 20 0 | 15 0 | 6 0 x3o . *b3o3o . . . . . ♦ 5 | 10 | 10 | 0 5 | * 129024 | 1 5 | 5 10 | 10 10 | 10 5 | 5 1 -----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- x3o3o *b3o3o . . . . . ♦ 16 | 80 | 160 | 40 80 | 10 16 | 8064 * ♦ 5 0 | 10 0 | 10 0 | 5 0 x3o . *b3o3o3o . . . . ♦ 6 | 15 | 20 | 0 15 | 0 6 | * 107520 | 1 4 | 4 6 | 6 4 | 4 1 -----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- x3o3o *b3o3o3o . . . . ♦ 32 | 240 | 640 | 160 480 | 60 192 | 12 32 | 3360 * ♦ 4 0 | 6 0 | 4 0 x3o . *b3o3o3o3o . . . ♦ 7 | 21 | 35 | 0 35 | 0 21 | 0 7 | * 61440 | 1 3 | 3 3 | 3 1 -----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- x3o3o *b3o3o3o3o . . . ♦ 64 | 672 | 2240 | 560 2240 | 280 1344 | 84 448 | 14 64 | 960 * | 3 0 | 3 0 x3o . *b3o3o3o3o3o . . ♦ 8 | 28 | 56 | 0 70 | 0 56 | 0 28 | 0 8 | * 23040 | 1 2 | 2 1 -----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- x3o3o *b3o3o3o3o3o . . ♦ 128 | 1792 | 7168 | 1792 8960 | 1120 7168 | 448 3584 | 112 1024 | 16 128 | 180 * | 2 0 x3o . *b3o3o3o3o3o3o . ♦ 9 | 36 | 84 | 0 126 | 0 126 | 0 84 | 0 36 | 0 9 | * 5120 | 1 1 -----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- x3o3o *b3o3o3o3o3o3o . ♦ 256 | 4608 | 21504 | 5376 32256 | 4032 32256 | 2016 21504 | 672 9216 | 144 2304 | 18 256 | 20 * x3o . *b3o3o3o3o3o3o3o ♦ 10 | 45 | 120 | 0 210 | 0 252 | 0 210 | 0 120 | 0 45 | 0 10 | * 512
o3o3o3o3o3o3o3o3o4s demi( . . . . . . . . . . ) | 512 ♦ 45 | 360 | 120 840 | 210 1260 | 252 1260 | 210 840 | 120 360 | 45 90 | 10 10 ----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- . . . . . . . . o4s | 2 | 11520 ♦ 16 | 8 56 | 28 112 | 56 140 | 70 112 | 56 56 | 28 16 | 8 2 ----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- sefa( . . . . . . . o3o4s ) | 3 | 3 | 61440 | 1 7 | 7 21 | 21 35 | 35 35 | 35 21 | 21 7 | 7 1 ----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- . . . . . . . o3o4s ♦ 4 | 6 | 4 | 15360 * ♦ 7 0 | 21 0 | 35 0 | 35 0 | 21 0 | 7 0 sefa( . . . . . . o3o3o4s ) ♦ 4 | 6 | 4 | * 107520 | 1 6 | 6 15 | 15 20 | 20 15 | 15 6 | 6 1 ----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- . . . . . . o3o3o4s ♦ 8 | 24 | 32 | 8 8 | 13440 * ♦ 6 0 | 15 0 | 20 0 | 15 0 | 6 0 sefa( . . . . . o3o3o3o4s ) ♦ 5 | 10 | 10 | 0 5 | * 129024 | 1 5 | 5 10 | 10 10 | 10 5 | 5 1 ----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- . . . . . o3o3o3o4s ♦ 16 | 80 | 160 | 40 80 | 10 16 | 8064 * ♦ 5 0 | 10 0 | 10 0 | 5 0 sefa( . . . . o3o3o3o3o4s ) ♦ 6 | 15 | 20 | 0 15 | 0 6 | * 107520 | 1 4 | 4 6 | 6 4 | 4 1 ----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- . . . . o3o3o3o3o4s ♦ 32 | 240 | 640 | 160 480 | 60 192 | 12 32 | 3360 * ♦ 4 0 | 6 0 | 4 0 sefa( . . . o3o3o3o3o3o4s ) ♦ 7 | 21 | 35 | 0 35 | 0 21 | 0 7 | * 61440 | 1 3 | 3 3 | 3 1 ----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- . . . o3o3o3o3o3o4s ♦ 64 | 672 | 2240 | 560 2240 | 280 1344 | 84 448 | 14 64 | 960 * | 3 0 | 3 0 sefa( . . o3o3o3o3o3o3o4s ) ♦ 8 | 28 | 56 | 0 70 | 0 56 | 0 28 | 0 8 | * 23040 | 1 2 | 2 1 ----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- . . o3o3o3o3o3o3o4s ♦ 128 | 1792 | 7168 | 1792 8960 | 1120 7168 | 448 3584 | 112 1024 | 16 128 | 180 * | 2 0 sefa( . o3o3o3o3o3o3o3o4s ) ♦ 9 | 36 | 84 | 0 126 | 0 126 | 0 84 | 0 36 | 0 9 | * 5120 | 1 1 ----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+------- . o3o3o3o3o3o3o3o4s ♦ 256 | 4608 | 21504 | 5376 32256 | 4032 32256 | 2016 21504 | 672 9216 | 144 2304 | 18 256 | 20 * sefa( o3o3o3o3o3o3o3o3o4s ) ♦ 10 | 45 | 120 | 0 210 | 0 252 | 0 210 | 0 120 | 0 45 | 0 10 | * 512 starting figure: o3o3o3o3o3o3o3o3o4x
© 2004-2025 | top of page |