Acronym hede
Name demi-dekeract,
Gosset polytope 17,1
Circumradius sqrt(5)/2 = 1.118034
Inradius
wrt. day
2/sqrt(5) = 0.894427
Inradius
wrt. henne
1/sqrt(8) = 0.353553
Coordinates (1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8))   & all even permutations, all even changes of sign
Volume 14173/453600 = 0.031246
Surface [14165 sqrt(2)+2 sqrt(5)]/22680 = 0.883457
Dihedral angles
(at margins)
Face vector 512, 11520, 61440, 122880, 142464, 115584, 64800, 2400, 5300, 532
Confer
general polytopal classes:
Wythoffian polyxenna   Coxeter-Elte-Gosset polytopes  
analogs:
demihypercube Dn  
External
links
polytopewiki

Incidence matrix according to Dynkin symbol

x3o3o *b3o3o3o3o3o3o3o

. . .    . . . . . . . | 512     45 |   360 |   120    840 |   210   1260 |  252   1260 |  210   840 | 120   360 |  45   90 | 10  10
-----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
x . .    . . . . . . . |   2 | 11520     16 |     8     56 |    28    112 |   56    140 |   70   112 |  56    56 |  28   16 |  8   2
-----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
x3o .    . . . . . . . |   3 |     3 | 61440 |     1      7 |     7     21 |   21     35 |   35    35 |  35    21 |  21    7 |  7   1
-----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
x3o3o    . . . . . . .    4 |     6 |     4 | 15360      *      7      0 |   21      0 |   35     0 |  35     0 |  21    0 |  7   0
x3o . *b3o . . . . . .    4 |     6 |     4 |     * 107520 |     1      6 |    6     15 |   15    20 |  20    15 |  15    6 |  6   1
-----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
x3o3o *b3o . . . . . .    8 |    24 |    32 |     8      8 | 13440      *     6      0 |   15     0 |  20     0 |  15    0 |  6   0
x3o . *b3o3o . . . . .    5 |    10 |    10 |     0      5 |     * 129024 |    1      5 |    5    10 |  10    10 |  10    5 |  5   1
-----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
x3o3o *b3o3o . . . . .   16 |    80 |   160 |    40     80 |    10     16 | 8064      *     5     0 |  10     0 |  10    0 |  5   0
x3o . *b3o3o3o . . . .    6 |    15 |    20 |     0     15 |     0      6 |    * 107520 |    1     4 |   4     6 |   6    4 |  4   1
-----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
x3o3o *b3o3o3o . . . .   32 |   240 |   640 |   160    480 |    60    192 |   12     32 | 3360     *    4     0 |   6    0 |  4   0
x3o . *b3o3o3o3o . . .    7 |    21 |    35 |     0     35 |     0     21 |    0      7 |    * 61440 |   1     3 |   3    3 |  3   1
-----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
x3o3o *b3o3o3o3o . . .   64 |   672 |  2240 |   560   2240 |   280   1344 |   84    448 |   14    64 | 960     * |   3    0 |  3   0
x3o . *b3o3o3o3o3o . .    8 |    28 |    56 |     0     70 |     0     56 |    0     28 |    0     8 |   * 23040 |   1    2 |  2   1
-----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
x3o3o *b3o3o3o3o3o . .  128 |  1792 |  7168 |  1792   8960 |  1120   7168 |  448   3584 |  112  1024 |  16   128 | 180    * |  2   0
x3o . *b3o3o3o3o3o3o .    9 |    36 |    84 |     0    126 |     0    126 |    0     84 |    0    36 |   0     9 |   * 5120 |  1   1
-----------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
x3o3o *b3o3o3o3o3o3o .  256 |  4608 | 21504 |  5376  32256 |  4032  32256 | 2016  21504 |  672  9216 | 144  2304 |  18  256 | 20   *
x3o . *b3o3o3o3o3o3o3o   10 |    45 |   120 |     0    210 |     0    252 |    0    210 |    0   120 |   0    45 |   0   10 |  * 512

o3o3o3o3o3o3o3o3o4s

demi( . . . . . . . . . . ) | 512     45 |   360 |   120    840 |   210   1260 |  252   1260 |  210   840 | 120   360 |  45   90 | 10  10
----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
      . . . . . . . . o4s   |   2 | 11520     16 |     8     56 |    28    112 |   56    140 |   70   112 |  56    56 |  28   16 |  8   2
----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
sefa( . . . . . . . o3o4s ) |   3 |     3 | 61440 |     1      7 |     7     21 |   21     35 |   35    35 |  35    21 |  21    7 |  7   1
----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
      . . . . . . . o3o4s      4 |     6 |     4 | 15360      *      7      0 |   21      0 |   35     0 |  35     0 |  21    0 |  7   0
sefa( . . . . . . o3o3o4s )    4 |     6 |     4 |     * 107520 |     1      6 |    6     15 |   15    20 |  20    15 |  15    6 |  6   1
----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
      . . . . . . o3o3o4s      8 |    24 |    32 |     8      8 | 13440      *     6      0 |   15     0 |  20     0 |  15    0 |  6   0
sefa( . . . . . o3o3o3o4s )    5 |    10 |    10 |     0      5 |     * 129024 |    1      5 |    5    10 |  10    10 |  10    5 |  5   1
----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
      . . . . . o3o3o3o4s     16 |    80 |   160 |    40     80 |    10     16 | 8064      *     5     0 |  10     0 |  10    0 |  5   0
sefa( . . . . o3o3o3o3o4s )    6 |    15 |    20 |     0     15 |     0      6 |    * 107520 |    1     4 |   4     6 |   6    4 |  4   1
----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
      . . . . o3o3o3o3o4s     32 |   240 |   640 |   160    480 |    60    192 |   12     32 | 3360     *    4     0 |   6    0 |  4   0
sefa( . . . o3o3o3o3o3o4s )    7 |    21 |    35 |     0     35 |     0     21 |    0      7 |    * 61440 |   1     3 |   3    3 |  3   1
----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
      . . . o3o3o3o3o3o4s     64 |   672 |  2240 |   560   2240 |   280   1344 |   84    448 |   14    64 | 960     * |   3    0 |  3   0
sefa( . . o3o3o3o3o3o3o4s )    8 |    28 |    56 |     0     70 |     0     56 |    0     28 |    0     8 |   * 23040 |   1    2 |  2   1
----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
      . . o3o3o3o3o3o3o4s    128 |  1792 |  7168 |  1792   8960 |  1120   7168 |  448   3584 |  112  1024 |  16   128 | 180    * |  2   0
sefa( . o3o3o3o3o3o3o3o4s )    9 |    36 |    84 |     0    126 |     0    126 |    0     84 |    0    36 |   0     9 |   * 5120 |  1   1
----------------------------+-----+-------+-------+--------------+--------------+-------------+------------+-----------+----------+-------
      . o3o3o3o3o3o3o3o4s    256 |  4608 | 21504 |  5376  32256 |  4032  32256 | 2016  21504 |  672  9216 | 144  2304 |  18  256 | 20   *
sefa( o3o3o3o3o3o3o3o3o4s )   10 |    45 |   120 |     0    210 |     0    252 |    0    210 |    0   120 |   0    45 |   0   10 |  * 512

starting figure: o3o3o3o3o3o3o3o3o4x

© 2004-2025
top of page