Acronym | pen, K-4.1 | |||||||||||||||||||||||
Name |
pentachoron, 4D simplex (α4), 5-cell, pyroter(id), tetrahedral pyramid, triangle-pyramidal pyramid, regular triangle-scalene, regular line-tettene, regular (point-)pennene, 3 tet rosette, vertex figure of hix, Gosset polytope 03, 5-2-stepprism | |||||||||||||||||||||||
|,>,O device | line pyramid pyramid pyramid = |>>> | |||||||||||||||||||||||
© | ||||||||||||||||||||||||
Segmentochoron display / VRML |
| |||||||||||||||||||||||
Cross sections |
© | |||||||||||||||||||||||
Circumradius | sqrt(2/5) = 0.632456 | |||||||||||||||||||||||
Edge radius | sqrt(3/20) = 0.387298 | |||||||||||||||||||||||
Face radius | 1/sqrt(15) = 0.258199 | |||||||||||||||||||||||
Inradius | 1/sqrt(40) = 0.158114 | |||||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||||
Vertex layers |
| |||||||||||||||||||||||
Lace city in approx. ASCII-art |
o3o o3o x3o | |||||||||||||||||||||||
o o x o o x | ||||||||||||||||||||||||
Lace hyper city in approx. ASCII-art |
| |||||||||||||||||||||||
Volume | sqrt(5)/96 = 0.023292 | |||||||||||||||||||||||
Surface | 5 sqrt(2)/12 = 0.589256 | |||||||||||||||||||||||
Rel. Roundness | 3 π2 sqrt(5)/500 = 13.241464 % | |||||||||||||||||||||||
General of army | (is itself convex) | |||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| |||||||||||||||||||||||
Dual | (selfdual, in different orientation) | |||||||||||||||||||||||
Dihedral angles | ||||||||||||||||||||||||
Face vector | 5, 10, 10, 5 | |||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||
External links |
A selfdual polychoron.
The number of ways to color the pentachoron with different colors per cell is 5!/60 = 2. – This is because the color group is the permutation group of 5 elements and has size 5!, while the order of the pure rotational pentachoral group is 60. (The reflectional pentachoral group would have twice as many, i.e. 120 elements.)
The pentachoron allows for a projection into 2D as the complete graph of 5 vertices K5, i.e. as the overlay of a convex pentagon and a vertex-inscribed pentagram, cf. to the right. In fact this corresponds to the folding of A4 into H2.
folding A4 into H2 o o \ / X / \ o---o => o---o 5
Incidence matrix according to Dynkin symbol
x3o3o3o . . . . | 5 ♦ 4 | 6 | 4 --------+---+----+----+-- x . . . | 2 | 10 | 3 | 3 --------+---+----+----+-- x3o . . | 3 | 3 | 10 | 2 --------+---+----+----+-- x3o3o . ♦ 4 | 6 | 4 | 5 snubbed forms: β3o3o3o
x3o3o3/2o . . . . | 5 ♦ 4 | 6 | 4 ----------+---+----+----+-- x . . . | 2 | 10 | 3 | 3 ----------+---+----+----+-- x3o . . | 3 | 3 | 10 | 2 ----------+---+----+----+-- x3o3o . ♦ 4 | 6 | 4 | 5
x3o3/2o3o . . . . | 5 ♦ 4 | 6 | 4 ----------+---+----+----+-- x . . . | 2 | 10 | 3 | 3 ----------+---+----+----+-- x3o . . | 3 | 3 | 10 | 2 ----------+---+----+----+-- x3o3/2o . ♦ 4 | 6 | 4 | 5
x3o3/2o3/2o . . . . | 5 ♦ 4 | 6 | 4 ------------+---+----+----+-- x . . . | 2 | 10 | 3 | 3 ------------+---+----+----+-- x3o . . | 3 | 3 | 10 | 2 ------------+---+----+----+-- x3o3/2o . ♦ 4 | 6 | 4 | 5
x3/2o3o3o . . . . | 5 ♦ 4 | 6 | 4 ----------+---+----+----+-- x . . . | 2 | 10 | 3 | 3 ----------+---+----+----+-- x3/2o . . | 3 | 3 | 10 | 2 ----------+---+----+----+-- x3/2o3o . ♦ 4 | 6 | 4 | 5
x3/2o3o3/2o . . . . | 5 ♦ 4 | 6 | 4 ------------+---+----+----+-- x . . . | 2 | 10 | 3 | 3 ------------+---+----+----+-- x3/2o . . | 3 | 3 | 10 | 2 ------------+---+----+----+-- x3/2o3o . ♦ 4 | 6 | 4 | 5
x3/2o3/2o3o . . . . | 5 ♦ 4 | 6 | 4 ------------+---+----+----+-- x . . . | 2 | 10 | 3 | 3 ------------+---+----+----+-- x3/2o . . | 3 | 3 | 10 | 2 ------------+---+----+----+-- x3/2o3/2o . ♦ 4 | 6 | 4 | 5
x3/2o3/2o3/2o . . . . | 5 ♦ 4 | 6 | 4 --------------+---+----+----+-- x . . . | 2 | 10 | 3 | 3 --------------+---+----+----+-- x3/2o . . | 3 | 3 | 10 | 2 --------------+---+----+----+-- x3/2o3/2o . ♦ 4 | 6 | 4 | 5
ox3oo3oo&#x → height = sqrt(5/8) = 0.790569
(pt || tet)
o.3o.3o. | 1 * ♦ 4 0 | 6 0 | 4 0
.o3.o3.o | * 4 ♦ 1 3 | 3 3 | 3 1
------------+-----+-----+-----+----
oo3oo3oo&#x | 1 1 | 4 * | 3 0 | 3 0
.x .. .. | 0 2 | * 6 | 1 2 | 2 1
------------+-----+-----+-----+----
ox .. ..&#x | 1 2 | 2 1 | 6 * | 2 0
.x3.o .. | 0 3 | 0 3 | * 4 | 1 1
------------+-----+-----+-----+----
ox3oo ..&#x ♦ 1 3 | 3 3 | 3 1 | 4 *
.x3.o3.o ♦ 0 4 | 0 6 | 0 4 | * 1
xo ox3oo&#x → height = sqrt(5/12) = 0.645497
(line || perp {3})
o. o.3o. | 2 * ♦ 1 3 0 | 3 3 0 | 3 1
.o .o3.o | * 3 ♦ 0 2 2 | 1 4 1 | 2 2
------------+-----+-------+-------+----
x. .. .. | 2 0 | 1 * * | 3 0 0 | 3 0
oo oo3oo&#x | 1 1 | * 6 * | 1 2 0 | 2 1
.. .x .. | 0 2 | * * 3 | 0 2 1 | 1 2
------------+-----+-------+-------+----
xo .. ..&#x | 2 1 | 1 2 0 | 3 * * | 2 0
.. ox ..&#x | 1 2 | 0 2 1 | * 6 * | 1 1
.. .x3.o | 0 3 | 0 0 3 | * * 1 | 0 2
------------+-----+-------+-------+----
xo ox ..&#x ♦ 2 2 | 1 4 1 | 2 2 0 | 3 *
.. ox3oo&#x ♦ 1 3 | 0 3 3 | 0 3 1 | * 2
oxo3ooo&#x → height(1,2) = height(2,3) = sqrt(2/3) = 0.816497 height(1,3) = 1 ( (pt || {3}) || pt) o..3o.. | 1 * * ♦ 3 1 0 0 | 3 3 0 0 | 1 3 0 .o.3.o. | * 3 * ♦ 1 0 2 1 | 2 1 1 2 | 1 2 1 ..o3..o | * * 1 ♦ 0 1 0 3 | 0 3 0 3 | 0 3 1 -----------+-------+---------+---------+------ oo.3oo.&#x | 1 1 0 | 3 * * * | 2 1 0 0 | 1 2 0 o.o3o.o&#x | 1 0 1 | * 1 * * | 0 3 0 0 | 0 3 0 .x. ... | 0 2 0 | * * 3 * | 1 0 1 1 | 1 1 1 .oo3.oo&#x | 0 1 1 | * * * 3 | 0 1 0 2 | 0 2 1 -----------+-------+---------+---------+------ ox. ...&#x | 1 2 0 | 2 0 1 0 | 3 * * * | 1 1 0 ooo ...&#x | 1 1 1 | 1 1 0 1 | * 3 * * | 0 2 0 .x.3.o. | 0 3 0 | 0 0 3 0 | * * 1 * | 1 0 1 .xo ...&#x | 0 2 1 | 0 0 1 2 | * * * 3 | 0 1 1 -----------+-------+---------+---------+------ ox.3oo.&#x ♦ 1 3 0 | 3 0 3 0 | 3 0 1 0 | 1 * * oxo ...&#x ♦ 1 2 1 | 2 1 1 2 | 1 2 0 1 | * 3 * .xo3.oo&#x ♦ 0 3 1 | 0 0 3 3 | 0 0 1 3 | * * 1
oxo oox&#x → height(1,2) = height(1,3) = sqrt(3)/2 = 0.866025 height(2,3) = 1/sqrt(2) = 0.707107 ( (pt || line) || perp line) o.. o.. | 1 * * ♦ 2 2 0 0 0 | 1 4 1 0 0 | 2 2 0 .o. .o. | * 2 * ♦ 1 0 1 2 0 | 1 2 0 2 1 | 2 1 1 ..o ..o | * * 2 ♦ 0 1 0 2 1 | 0 2 1 1 2 | 1 2 1 -----------+-------+-----------+-----------+------ oo. oo.&#x | 1 1 0 | 2 * * * * | 1 2 0 0 0 | 2 1 0 o.o o.o&#x | 1 0 1 | * 2 * * * | 0 2 1 0 0 | 1 2 0 .x. ... | 0 2 0 | * * 1 * * | 1 0 0 2 0 | 2 0 1 .oo .oo&#x | 0 1 1 | * * * 4 * | 0 1 0 1 1 | 1 1 1 ... ..x | 0 0 2 | * * * * 1 | 0 0 1 0 2 | 0 2 1 -----------+-------+-----------+-----------+------ ox. ...&#x | 1 2 0 | 2 0 1 0 0 | 1 * * * * | 2 0 0 ooo ooo&#x | 1 1 1 | 1 1 0 1 0 | * 4 * * * | 1 1 0 ... o.x&#x | 1 0 2 | 0 2 0 0 1 | * * 1 * * | 0 2 0 .xo ...&#x | 0 2 1 | 0 0 1 2 0 | * * * 2 * | 1 0 1 ... .ox&#x | 0 1 2 | 0 0 0 2 1 | * * * * 2 | 0 1 1 -----------+-------+-----------+-----------+------ oxo ...&#x ♦ 1 2 1 | 2 1 1 2 0 | 1 2 0 1 0 | 2 * * ... oox&#x ♦ 1 1 2 | 1 2 0 2 1 | 0 2 1 0 1 | * 2 * .xo .ox&#x ♦ 0 2 2 | 0 0 1 4 1 | 0 0 0 2 2 | * * 1
ooox&#x → height(1,2) = height(1,3) = height(2,3) = 1 height(1,4) = height(2,4) = height(3,4) = sqrt(3)/2 = 0.866025 o... | 1 * * * ♦ 1 1 2 0 0 0 0 | 1 2 2 1 0 0 0 | 2 1 1 0 .o.. | * 1 * * ♦ 1 0 0 1 2 0 0 | 1 2 0 0 2 1 0 | 2 1 0 1 ..o. | * * 1 * ♦ 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 ...o | * * * 2 ♦ 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 --------+---------+---------------+---------------+-------- oo..&#x | 1 1 0 0 | 1 * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 o.o.&#x | 1 0 1 0 | * 1 * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 o..o&#x | 1 0 0 1 | * * 2 * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 .oo.&#x | 0 1 1 0 | * * * 1 * * * | 1 0 0 0 2 0 0 | 2 0 0 1 .o.o&#x | 0 1 0 1 | * * * * 2 * * | 0 1 0 0 1 1 0 | 1 1 0 1 ..oo&#x | 0 0 1 1 | * * * * * 2 * | 0 0 1 0 1 0 1 | 1 0 1 1 ...x | 0 0 0 2 | * * * * * * 1 | 0 0 0 1 0 1 1 | 0 1 1 1 --------+---------+---------------+---------------+-------- ooo.&#x | 1 1 1 0 | 1 1 0 1 0 0 0 | 1 * * * * * * | 2 0 0 0 oo.o&#x | 1 1 0 1 | 1 0 1 0 1 0 0 | * 2 * * * * * | 1 1 0 0 o.oo&#x | 1 0 1 1 | 0 1 1 0 0 1 0 | * * 2 * * * * | 1 0 1 0 o..x&#x | 1 0 0 2 | 0 0 2 0 0 0 1 | * * * 1 * * * | 0 1 1 0 .ooo&#x | 0 1 1 1 | 0 0 0 1 1 1 0 | * * * * 2 * * | 1 0 0 1 .o.x&#x | 0 1 0 2 | 0 0 0 0 2 0 1 | * * * * * 1 * | 0 1 0 1 ..ox&#x | 0 0 1 2 | 0 0 0 0 0 2 1 | * * * * * * 1 | 0 0 1 1 --------+---------+---------------+---------------+-------- oooo&#x ♦ 1 1 1 1 | 1 1 1 1 1 1 0 | 1 1 1 0 1 0 0 | 2 * * * oo.x&#x ♦ 1 1 0 2 | 1 0 2 0 2 0 1 | 0 2 0 1 0 1 0 | * 1 * * o.ox&#x ♦ 1 0 1 2 | 0 1 2 0 0 2 1 | 0 0 2 1 0 0 1 | * * 1 * .oox&#x ♦ 0 1 1 2 | 0 0 0 1 2 2 1 | 0 0 0 0 2 1 1 | * * * 1
ooooo&#x → all pairwise heights = 1 o.... | 1 * * * * ♦ 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 .o... | * 1 * * * ♦ 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 ..o.. | * * 1 * * ♦ 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 ...o. | * * * 1 * ♦ 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 ....o | * * * * 1 ♦ 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ---------+-----------+---------------------+---------------------+---------- oo...&#x | 1 1 0 0 0 | 1 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 o.o..&#x | 1 0 1 0 0 | * 1 * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 o..o.&#x | 1 0 0 1 0 | * * 1 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 o...o&#x | 1 0 0 0 1 | * * * 1 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 .oo..&#x | 0 1 1 0 0 | * * * * 1 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 .o.o.&#x | 0 1 0 1 0 | * * * * * 1 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 .o..o&#x | 0 1 0 0 1 | * * * * * * 1 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 ..oo.&#x | 0 0 1 1 0 | * * * * * * * 1 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 ..o.o&#x | 0 0 1 0 1 | * * * * * * * * 1 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 ...oo&#x | 0 0 0 1 1 | * * * * * * * * * 1 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ---------+-----------+---------------------+---------------------+---------- ooo..&#x | 1 1 1 0 0 | 1 1 0 0 1 0 0 0 0 0 | 1 * * * * * * * * * | 1 1 0 0 0 oo.o.&#x | 1 1 0 1 0 | 1 0 1 0 0 1 0 0 0 0 | * 1 * * * * * * * * | 1 0 1 0 0 oo..o&#x | 1 1 0 0 1 | 1 0 0 1 0 0 1 0 0 0 | * * 1 * * * * * * * | 0 1 1 0 0 o.oo.&#x | 1 0 1 1 0 | 0 1 1 0 0 0 0 1 0 0 | * * * 1 * * * * * * | 1 0 0 1 0 o.o.o&#x | 1 0 1 0 1 | 0 1 0 1 0 0 0 0 1 0 | * * * * 1 * * * * * | 0 1 0 1 0 o..oo&#x | 1 0 0 1 1 | 0 0 1 1 0 0 0 0 0 1 | * * * * * 1 * * * * | 0 0 1 1 0 .ooo.&#x | 0 1 1 1 0 | 0 0 0 0 1 1 0 1 0 0 | * * * * * * 1 * * * | 1 0 0 0 1 .oo.o&#x | 0 1 1 0 1 | 0 0 0 0 1 0 1 0 1 0 | * * * * * * * 1 * * | 0 1 0 0 1 .o.oo&#x | 0 1 0 1 1 | 0 0 0 0 0 1 1 0 0 1 | * * * * * * * * 1 * | 0 0 1 0 1 ..ooo&#x | 0 0 1 1 1 | 0 0 0 0 0 0 0 1 1 1 | * * * * * * * * * 1 | 0 0 0 1 1 ---------+-----------+---------------------+---------------------+---------- oooo.&#x ♦ 1 1 1 1 0 | 1 1 1 0 1 1 0 1 0 0 | 1 1 0 1 0 0 1 0 0 0 | 1 * * * * ooo.o&#x ♦ 1 1 1 0 1 | 1 1 0 1 1 0 1 0 1 0 | 1 0 1 0 1 0 0 1 0 0 | * 1 * * * oo.oo&#x ♦ 1 1 0 1 1 | 1 0 1 1 0 1 1 0 0 1 | 0 1 1 0 0 1 0 0 1 0 | * * 1 * * o.ooo&#x ♦ 1 0 1 1 1 | 0 1 1 1 0 0 0 1 1 1 | 0 0 0 1 1 1 0 0 0 1 | * * * 1 * .oooo&#x ♦ 0 1 1 1 1 | 0 0 0 0 1 1 1 1 1 1 | 0 0 0 0 0 0 1 1 1 1 | * * * * 1
© 2004-2025 | top of page |