Acronym biscrox
Name bistratic icosahedron-first cap of rectified hexacosachoron
Circumradius sqrt[5+2 sqrt(5)] = 3.077684
Lace city
in approx. ASCII-art
            o5x
               
               
               
            x5x
    x5o        
               
               
o5o            
    o5f        
            x5f
               
x5o            
               
            F5o
    x5x        
            o5F
               
o5x            
               
            f5x
    f5o        
o5o            
               
               
    o5x        
            x5x
               
               
               
            x5o
               
               
 |   |       |    \
 |   |       |      +-- gyepip
 |   |       +-- srid
 |   +---------- id
 +-------------- ike
Dihedral angles
  • at {3} between oct and oct:   arccos[-(1+3 sqrt(5))/8] = 164.477512°
  • at {3} between oct and squippy:   arccos[-(1+3 sqrt(5))/8] = 164.477512°
  • at {3} between gyepip and oct:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244°
  • at {3} between gyepip and squippy:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244°
  • at {3} between ike and oct:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244°
  • at {4} between squippy and srid:   arccos[1/sqrt(2)] = 45°
  • at {3} between oct and srid:   arccos[sqrt(10)/4] = 37.761244°
  • at {5} between gyepip and srid:   arccos[(1+sqrt(5))/4] = 36°
Confer
uniform relative:
rox  
related CRFs:
arspabd biscrox   arsted biscrox  
related segmentochora:
ikaid   idasrid  
general polytopal classes:
bistratic lace towers  

At the first glance this CRF just looks as it would be a mere bistratic stack of segmentochora. But here the peppies of the upper segment happen to become corealmic with the paps of the lower. Thus in here they blend into gyepips instead.


Incidence matrix according to Dynkin symbol

xox3oxo5oox&#xt   → height(1,2) = (sqrt(5)-1)/4 = 0.309017
                    height(2,3) = 1/2
(ike || pseudo id || srid)

o..3o..5o..     | 12  *  *   5  5  0   0  0  0 |  5  5  5  0  0  0  0  0  0  0 | 1  5  1  0  0 0
.o.3.o.5.o.     |  * 30  *   0  2  4   4  0  0 |  0  1  4  2  2  4  2  0  0  0 | 0  2  2  2  1 0
..o3..o5..o     |  *  * 60 |  0  0  0   2  2  2 |  0  0  0  0  2  1  2  1  2  1 | 0  0  1  1  2 1
----------------+----------+--------------------+-------------------------------+----------------
x.. ... ...     |  2  0  0 | 30  *  *   *  *  * |  2  1  0  0  0  0  0  0  0  0 | 1  2  0  0  0 0
oo.3oo.5oo.&#x  |  1  1  0 |  * 60  *   *  *  * |  0  1  2  0  0  0  0  0  0  0 | 0  2  1  0  0 0
... .x. ...     |  0  2  0 |  *  * 60   *  *  * |  0  0  1  1  0  1  0  0  0  0 | 0  1  1  1  0 0
.oo3.oo5.oo&#x  |  0  1  1 |  *  *  * 120  *  * |  0  0  0  0  1  1  1  0  0  0 | 0  0  1  1  1 0
..x ... ...     |  0  0  2 |  *  *  *   * 60  * |  0  0  0  0  1  0  0  1  1  0 | 0  0  0  1  1 1
... ... ..x     |  0  0  2 |  *  *  *   *  * 60 |  0  0  0  0  0  0  1  0  1  1 | 0  0  1  0  1 1
----------------+----------+--------------------+-------------------------------+----------------
x..3o.. ...     |  3  0  0 |  3  0  0   0  0  0 | 20  *  *  *  *  *  *  *  *  * | 1  1  0  0  0 0
xo. ... ...&#x  |  2  1  0 |  1  2  0   0  0  0 |  * 30  *  *  *  *  *  *  *  * | 0  2  0  0  0 0
... ox. ...&#x  |  1  2  0 |  0  2  1   0  0  0 |  *  * 60  *  *  *  *  *  *  * | 0  1  1  0  0 0
.o.3.x. ...     |  0  3  0 |  0  0  3   0  0  0 |  *  *  * 20  *  *  *  *  *  * | 0  1  0  1  0 0
.ox ... ...&#x  |  0  1  2 |  0  0  0   2  1  0 |  *  *  *  * 60  *  *  *  *  * | 0  0  0  1  1 0
... .xo ...&#x  |  0  2  1 |  0  0  1   2  0  0 |  *  *  *  *  * 60  *  *  *  * | 0  0  1  1  0 0
... ... .ox&#x  |  0  1  2 |  0  0  0   2  0  1 |  *  *  *  *  *  * 60  *  *  * | 0  0  1  0  1 0
..x3..o ...     |  0  0  3 |  0  0  0   0  3  0 |  *  *  *  *  *  *  * 20  *  * | 0  0  0  1  0 1
..x ... ..x     |  0  0  4 |  0  0  0   0  2  2 |  *  *  *  *  *  *  *  * 30  * | 0  0  0  0  1 1
... ..o5..x     |  0  0  5 |  0  0  0   0  0  5 |  *  *  *  *  *  *  *  *  * 12 | 0  0  1  0  0 1
----------------+----------+--------------------+-------------------------------+----------------
x..3o..5o..      12  0  0 | 30  0  0   0  0  0 | 20  0  0  0  0  0  0  0  0  0 | 1  *  *  *  * *
xo.3ox. ...&#x    3  3  0 |  3  6  3   0  0  0 |  1  3  3  1  0  0  0  0  0  0 | * 20  *  *  * *
... oxo5oox&#xt   1  5  5 |  0  5  5  10  0  5 |  0  0  5  0  0  5  5  0  0  1 | *  * 12  *  * *
.ox3.xo ...&#x    0  3  3 |  0  0  3   6  3  0 |  0  0  0  1  3  3  0  1  0  0 | *  *  * 20  * *
.ox ... .ox&#x    0  1  4 |  0  0  0   4  2  2 |  0  0  0  0  2  0  2  0  1  0 | *  *  *  * 30 *
..x3..o5..x       0  0 60 |  0  0  0   0 60 60 |  0  0  0  0  0  0  0 20 30 12 | *  *  *  *  * 1

© 2004-2018
top of page