| Acronym | ditdid |
| TOCID symbol | DE* |
| Name |
ditrigonal dodecadodecahedron, vertex figure of dittady |
| VRML |
|
| Circumradius | sqrt(3)/2 = 0.866025 |
| Vertex figure | [(5/3,5)3] |
| General of army | doe |
| Colonel of regiment | sidtid |
| Dual | matai |
| Dihedral angles |
|
| Face vector | 20, 60, 24 |
| Confer |
|
|
External links |
|
As abstract polytope ditdid is automorph, thereby interchanging the roles of pentagons and (retrograde) pentagrams. As such it could be seen to be a non-regular realization of the regular abstract polyhedron {5,6}4 (where the index just denotes the size of the corresponding Petrie polygon).
Ditdid also can be obtained as a blend of sidtid with gidtid, blending out the triangles.
This polyhedron is an edge-faceting of the small ditrigonal icosidodecahedron (sidtid).
Incidence matrix according to Dynkin symbol
x
5/3 / \ 5
o---o
3
x5/3o3o5*a . . . | 20 | 6 | 3 3 -----------+----+----+------ x . . | 2 | 60 | 1 1 -----------+----+----+------ x5/3o . | 5 | 5 | 12 * x . o5*a | 5 | 5 | * 12
x
5/2 / \ 5
o---o
3/2
o3/2o5/2x5*a . . . | 20 | 6 | 3 3 -------------+----+----+------ . . x | 2 | 60 | 1 1 -------------+----+----+------ . o5/2x | 5 | 5 | 12 * o . x5*a | 5 | 5 | * 12
x
5/2 / \ 5/4
o---o
3
o5/4x5/2o3*a . . . | 20 | 6 | 3 3 ----------+----+----+------ . x . | 2 | 60 | 1 1 ----------+----+----+------ o5/4x . | 5 | 5 | 12 * . x5/2o | 5 | 5 | * 12
x
5/3 / \ 5/4
o---o
3/2
x5/4o3/2o5/3*a . . . | 20 | 6 | 3 3 ---------------+----+----+------ x . . | 2 | 60 | 1 1 ---------------+----+----+------ x5/4o . | 5 | 5 | 12 * x . o5/3*a | 5 | 5 | * 12
© 2004-2025 | top of page |