Acronym | dittady |
Name | ditrigonary dishecatonicosachoron |
Cross sections |
© |
Circumradius | 1 |
Coordinates | |
General of army | ex |
Colonel of regiment | sishi |
Face vector | 120, 1200, 2400, 240 |
Confer |
|
External links |
As abstract polytope dittady is automorph, thereby interchanging ike and gike. As such it could be seen to be a non-regular realization of the regular abstract polychoron {3,5,6}.
Incidence matrix according to Dynkin symbol
x3o5o3o5/3*b x . . . | 120 ♦ 20 | 60 | 12 12 -------------+-----+------+------+-------- x . . . | 2 | 1200 | 6 | 3 3 -------------+-----+------+------+-------- x3o . . | 3 | 3 | 2400 | 1 1 -------------+-----+------+------+-------- x3o5o . ♦ 12 | 30 | 20 | 120 * x3o . o5/3*b ♦ 12 | 30 | 20 | * 120
x3o5o3/2o5/2*b x . . . | 120 ♦ 20 | 60 | 12 12 ---------------+-----+------+------+-------- x . . . | 2 | 1200 | 6 | 3 3 ---------------+-----+------+------+-------- x3o . . | 3 | 3 | 2400 | 1 1 ---------------+-----+------+------+-------- x3o5o . ♦ 12 | 30 | 20 | 120 * x3o . o5/2*b ♦ 12 | 30 | 20 | * 120
x3o5/4o3o5/2*b x . . . | 120 ♦ 20 | 60 | 12 12 ---------------+-----+------+------+-------- x . . . | 2 | 1200 | 6 | 3 3 ---------------+-----+------+------+-------- x3o . . | 3 | 3 | 2400 | 1 1 ---------------+-----+------+------+-------- x3o5/4o . ♦ 12 | 30 | 20 | 120 * x3o . o5/2*b ♦ 12 | 30 | 20 | * 120
x3o5/4o3/2o5/3*b x . . . | 120 ♦ 20 | 60 | 12 12 -----------------+-----+------+------+-------- x . . . | 2 | 1200 | 6 | 3 3 -----------------+-----+------+------+-------- x3o . . | 3 | 3 | 2400 | 1 1 -----------------+-----+------+------+-------- x3o5/4o . ♦ 12 | 30 | 20 | 120 * x3o . o5/3*b ♦ 12 | 30 | 20 | * 120
x3/2o5o3o5/3*b x . . . | 120 ♦ 20 | 60 | 12 12 ---------------+-----+------+------+-------- x . . . | 2 | 1200 | 6 | 3 3 ---------------+-----+------+------+-------- x3/2o . . | 3 | 3 | 2400 | 1 1 ---------------+-----+------+------+-------- x3/2o5o . ♦ 12 | 30 | 20 | 120 * x3/2o . o5/3*b ♦ 12 | 30 | 20 | * 120
x3/2o5o3/2o5/2*b x . . . | 120 ♦ 20 | 60 | 12 12 -----------------+-----+------+------+-------- x . . . | 2 | 1200 | 6 | 3 3 -----------------+-----+------+------+-------- x3/2o . . | 3 | 3 | 2400 | 1 1 -----------------+-----+------+------+-------- x3/2o5o . ♦ 12 | 30 | 20 | 120 * x3/2o . o5/2*b ♦ 12 | 30 | 20 | * 120
x3/2o5/4o3o5/2*b x . . . | 120 ♦ 20 | 60 | 12 12 -----------------+-----+------+------+-------- x . . . | 2 | 1200 | 6 | 3 3 -----------------+-----+------+------+-------- x3/2o . . | 3 | 3 | 2400 | 1 1 -----------------+-----+------+------+-------- x3/2o5/4o . ♦ 12 | 30 | 20 | 120 * x3/2o . o5/2*b ♦ 12 | 30 | 20 | * 120
x3/2o5/4o3/2o5/3*b x . . . | 120 ♦ 20 | 60 | 12 12 -------------------+-----+------+------+-------- x . . . | 2 | 1200 | 6 | 3 3 -------------------+-----+------+------+-------- x3/2o . . | 3 | 3 | 2400 | 1 1 -------------------+-----+------+------+-------- x3/2o5/4o . ♦ 12 | 30 | 20 | 120 * x3/2o . o5/3*b ♦ 12 | 30 | 20 | * 120
© 2004-2024 | top of page |