Acronym | ... |
Name | xoxxFxxox3oxoxoxoxo5ooxoooxoo&#xt |
Face vector | 336, 1380, 1414, 370 |
Confer |
|
The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2o(-x)ofo3oxoox5ooxoo&#zx. And finally into VFf(-x)o2o(-x)ofo3oxoox5ooxoo&#zx. Then a Stott expansion wrt. the first and second nodes produces this polychoron.
Incidence matrix according to Dynkin symbol
xoxxFxxox3oxoxoxoxo5ooxoooxoo&#xt → height(1,2) = height(8,9) = (sqrt(5)-1)/4 = 0.309017 height(2,3) = height(4,5) = height(5,6) = height(7,8) = 1/2 height(3,4) = height(6,7) = (1+sqrt(5))/4 = 0.809017 (ike || pseudo id || pseudo srid || pseudo ti || pseudo F-ike || pseudo ti || pseudo srid || pseudo id || doe) o........3o........5o........ & | 24 * * * * ♦ 5 5 0 0 0 0 0 0 0 0 0 | 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 5 1 0 0 0 0 0 0 0 .o.......3.o.......5.o....... & | * 60 * * * ♦ 0 2 4 4 0 0 0 0 0 0 0 | 0 1 4 2 2 4 2 0 0 0 0 0 0 0 0 0 0 0 | 0 2 2 2 1 0 0 0 0 0 ..o......3..o......5..o...... & | * * 120 * * | 0 0 0 2 2 2 2 0 0 0 0 | 0 0 0 0 2 1 2 1 2 1 2 1 2 0 0 0 0 0 | 0 0 1 1 2 1 2 1 0 0 ...o.....3...o.....5...o..... & | * * * 120 * | 0 0 0 0 0 0 2 1 2 1 1 | 0 0 0 0 0 0 0 0 0 0 2 2 1 2 2 1 2 1 | 0 0 0 0 0 2 1 1 2 2 ....o....3....o....5....o.... | * * * * 12 ♦ 0 0 0 0 0 0 0 0 0 10 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 5 | 0 0 0 0 0 0 0 2 0 5 ------------------------------------+------------------+------------------------------------------+---------------------------------------------------------------+----------------------------- x........ ......... ......... & | 2 0 0 0 0 | 60 * * * * * * * * * * | 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 0 0 0 0 0 0 0 0 oo.......3oo.......5oo.......&#x & | 1 1 0 0 0 | * 120 * * * * * * * * * | 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 2 1 0 0 0 0 0 0 0 ......... .x....... ......... & | 0 2 0 0 0 | * * 120 * * * * * * * * | 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 0 0 0 .oo......3.oo......5.oo......&#x & | 0 1 1 0 0 | * * * 240 * * * * * * * | 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 | 0 0 1 1 1 0 0 0 0 0 ..x...... ......... ......... & | 0 0 2 0 0 | * * * * 120 * * * * * * | 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 | 0 0 0 1 1 1 1 0 0 0 ......... ......... ..x...... & | 0 0 2 0 0 | * * * * * 120 * * * * * | 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 | 0 0 1 0 1 0 1 1 0 0 ..oo.....3..oo.....5..oo.....&#x & | 0 0 1 1 0 | * * * * * * 240 * * * * | 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 | 0 0 0 0 0 1 1 1 0 0 ...x..... ......... ......... & | 0 0 0 2 0 | * * * * * * * 60 * * * | 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 1 0 0 | 0 0 0 0 0 2 1 0 2 0 ......... ...x..... ......... & | 0 0 0 2 0 | * * * * * * * * 120 * * | 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 | 0 0 0 0 0 1 0 1 1 1 ...oo....3...oo....5...oo....&#x & | 0 0 0 1 1 | * * * * * * * * * 120 * | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 | 0 0 0 0 0 0 0 1 0 2 ...o.o...3...o.o...5...o.o...&#x | 0 0 0 2 0 | * * * * * * * * * * 60 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 | 0 0 0 0 0 0 0 0 2 2 ------------------------------------+------------------+------------------------------------------+---------------------------------------------------------------+----------------------------- x........3o........ ......... & | 3 0 0 0 0 | 3 0 0 0 0 0 0 0 0 0 0 | 40 * * * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 0 xo....... ......... .........&#x & | 2 1 0 0 0 | 1 2 0 0 0 0 0 0 0 0 0 | * 60 * * * * * * * * * * * * * * * * | 0 2 0 0 0 0 0 0 0 0 ......... ox....... .........&#x & | 1 2 0 0 0 | 0 2 1 0 0 0 0 0 0 0 0 | * * 120 * * * * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0 0 .o.......3.x....... ......... & | 0 3 0 0 0 | 0 0 3 0 0 0 0 0 0 0 0 | * * * 40 * * * * * * * * * * * * * * | 0 1 0 1 0 0 0 0 0 0 .ox...... ......... .........&#x & | 0 1 2 0 0 | 0 0 0 2 1 0 0 0 0 0 0 | * * * * 120 * * * * * * * * * * * * * | 0 0 0 1 1 0 0 0 0 0 ......... .xo...... .........&#x & | 0 2 1 0 0 | 0 0 1 2 0 0 0 0 0 0 0 | * * * * * 120 * * * * * * * * * * * * | 0 0 1 1 0 0 0 0 0 0 ......... ......... .ox......&#x & | 0 1 2 0 0 | 0 0 0 2 0 1 0 0 0 0 0 | * * * * * * 120 * * * * * * * * * * * | 0 0 1 0 1 0 0 0 0 0 ..x......3..o...... ......... & | 0 0 3 0 0 | 0 0 0 0 3 0 0 0 0 0 0 | * * * * * * * 40 * * * * * * * * * * | 0 0 0 1 0 1 0 0 0 0 ..x...... ......... ..x...... & | 0 0 4 0 0 | 0 0 0 0 2 2 0 0 0 0 0 | * * * * * * * * 60 * * * * * * * * * | 0 0 0 0 1 0 1 0 0 0 ......... ..o......5..x...... & | 0 0 5 0 0 | 0 0 0 0 0 5 0 0 0 0 0 | * * * * * * * * * 24 * * * * * * * * | 0 0 1 0 0 0 0 1 0 0 ..xx..... ......... .........&#x & | 0 0 2 2 0 | 0 0 0 0 1 0 2 1 0 0 0 | * * * * * * * * * * 120 * * * * * * * | 0 0 0 0 0 1 1 0 0 0 ......... ..ox..... .........&#x & | 0 0 1 2 0 | 0 0 0 0 0 0 2 0 1 0 0 | * * * * * * * * * * * 120 * * * * * * | 0 0 0 0 0 1 0 1 0 0 ......... ......... ..xo.....&#x & | 0 0 2 1 0 | 0 0 0 0 0 1 2 0 0 0 0 | * * * * * * * * * * * * 120 * * * * * | 0 0 0 0 0 0 1 1 0 0 ...x.....3...x..... ......... & | 0 0 0 6 0 | 0 0 0 0 0 0 0 3 3 0 0 | * * * * * * * * * * * * * 40 * * * * | 0 0 0 0 0 1 0 0 1 0 ......... ...xo.... .........&#x & | 0 0 0 2 1 | 0 0 0 0 0 0 0 0 1 2 0 | * * * * * * * * * * * * * * 120 * * * | 0 0 0 0 0 0 0 1 0 1 ...x.x... ......... .........&#x | 0 0 0 4 0 | 0 0 0 0 0 0 0 2 0 0 2 | * * * * * * * * * * * * * * * 30 * * | 0 0 0 0 0 0 0 0 2 0 ......... ...x.x... .........&#x | 0 0 0 4 0 | 0 0 0 0 0 0 0 0 2 0 2 | * * * * * * * * * * * * * * * * 60 * | 0 0 0 0 0 0 0 0 1 1 ...ooo...3...ooo...5...ooo...&#x | 0 0 0 2 1 | 0 0 0 0 0 0 0 0 0 2 1 | * * * * * * * * * * * * * * * * * 60 | 0 0 0 0 0 0 0 0 0 2 ------------------------------------+------------------+------------------------------------------+---------------------------------------------------------------+----------------------------- x........3o........5o........ & ♦ 12 0 0 0 0 | 30 0 0 0 0 0 0 0 0 0 0 | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * xo.......3ox....... .........&#x & ♦ 3 3 0 0 0 | 3 6 3 0 0 0 0 0 0 0 0 | 1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | * 40 * * * * * * * * ......... oxo......5oox......&#x & ♦ 1 5 5 0 0 | 0 5 5 10 0 5 0 0 0 0 0 | 0 0 5 0 0 5 5 0 0 1 0 0 0 0 0 0 0 0 | * * 24 * * * * * * * .ox......3.xo...... .........&#x & ♦ 0 3 3 0 0 | 0 0 3 6 3 0 0 0 0 0 0 | 0 0 0 1 3 3 0 1 0 0 0 0 0 0 0 0 0 0 | * * * 40 * * * * * * .ox...... ......... .ox......&#x & ♦ 0 1 4 0 0 | 0 0 0 4 2 2 0 0 0 0 0 | 0 0 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 | * * * * 60 * * * * * ..xx.....3..ox..... .........&#x & ♦ 0 0 3 6 0 | 0 0 0 0 3 0 6 3 3 0 0 | 0 0 0 0 0 0 0 1 0 0 3 3 0 1 0 0 0 0 | * * * * * 40 * * * * ..xx..... ......... ..xo.....&#x & ♦ 0 0 4 2 0 | 0 0 0 0 2 2 4 1 0 0 0 | 0 0 0 0 0 0 0 0 1 0 2 0 2 0 0 0 0 0 | * * * * * * 60 * * * ......... ..oxo....5..xoo....&#x & ♦ 0 0 5 5 1 | 0 0 0 0 0 5 10 0 5 5 0 | 0 0 0 0 0 0 0 0 0 1 0 5 5 0 5 0 0 0 | * * * * * * * 24 * * ...x.x...3...x.x... .........&#x ♦ 0 0 0 12 0 | 0 0 0 0 0 0 0 6 6 0 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 3 0 | * * * * * * * * 20 * ......... ...xox... .........&#x ♦ 0 0 0 4 1 | 0 0 0 0 0 0 0 0 2 4 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 | * * * * * * * * * 60
© 2004-2025 | top of page |