Acronym | hepth |
Name |
hepteractic heptacomb, 7D hypercubical honeycomb (δ7) |
Dual | (selfdual) |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x4o3o3o3o3o3o4o (N → ∞) . . . . . . . . | N ♦ 14 | 84 | 280 | 560 | 672 | 448 | 128 ----------------+-----+-----+-----+-----+-----+-----+-----+---- x . . . . . . . | 2 | 7N ♦ 12 | 60 | 160 | 240 | 192 | 64 ----------------+-----+-----+-----+-----+-----+-----+-----+---- x4o . . . . . . | 4 | 4 | 21N ♦ 10 | 40 | 80 | 80 | 32 ----------------+-----+-----+-----+-----+-----+-----+-----+---- x4o3o . . . . . ♦ 8 | 12 | 6 | 35N ♦ 8 | 24 | 32 | 16 ----------------+-----+-----+-----+-----+-----+-----+-----+---- x4o3o3o . . . . ♦ 16 | 32 | 24 | 8 | 35N ♦ 6 | 12 | 8 ----------------+-----+-----+-----+-----+-----+-----+-----+---- x4o3o3o3o . . . ♦ 32 | 80 | 80 | 40 | 10 | 21N | 4 | 4 ----------------+-----+-----+-----+-----+-----+-----+-----+---- x4o3o3o3o3o . . ♦ 64 | 192 | 240 | 160 | 60 | 12 | 7N | 2 ----------------+-----+-----+-----+-----+-----+-----+-----+---- x4o3o3o3o3o3o . ♦ 128 | 448 | 672 | 560 | 280 | 84 | 14 | N
o3o3o *b3o3o3o3o4x (N → ∞) . . . . . . . . | 2N ♦ 14 | 84 | 280 | 560 | 672 | 448 | 64 64 -------------------+-----+-----+-----+-----+-----+-----+-----+------ . . . . . . . x | 2 | 14N ♦ 12 | 60 | 160 | 240 | 192 | 32 32 -------------------+-----+-----+-----+-----+-----+-----+-----+------ . . . . . . o4x | 4 | 4 | 42N ♦ 10 | 40 | 80 | 80 | 16 16 -------------------+-----+-----+-----+-----+-----+-----+-----+------ . . . . . o3o4x ♦ 8 | 12 | 6 | 70N ♦ 8 | 24 | 32 | 8 8 -------------------+-----+-----+-----+-----+-----+-----+-----+------ . . . . o3o3o4x ♦ 16 | 32 | 24 | 8 | 70N ♦ 6 | 12 | 4 4 -------------------+-----+-----+-----+-----+-----+-----+-----+------ . . . o3o3o3o4x ♦ 32 | 80 | 80 | 40 | 10 | 42N | 4 | 2 2 -------------------+-----+-----+-----+-----+-----+-----+-----+------ . o . *b3o3o3o3o4x ♦ 64 | 192 | 240 | 160 | 60 | 12 | 14N | 1 1 -------------------+-----+-----+-----+-----+-----+-----+-----+------ o3o . *b3o3o3o3o4x ♦ 128 | 448 | 672 | 560 | 280 | 84 | 14 | N * . o3o *b3o3o3o3o4x ♦ 128 | 448 | 672 | 560 | 280 | 84 | 14 | * N
x4o3o3o3o3o3o4x (N → ∞) . . . . . . . . | 128N ♦ 7 7 | 21 42 21 | 35 105 105 35 | 35 140 210 140 35 | 21 105 210 210 105 21 | 7 42 105 140 105 42 7 | 1 7 21 35 35 21 7 1 ----------------+------+-----------+-----------------+-----------------------+-----------------------------+-----------------------------+--------------------------------+-------------------------- x . . . . . . . | 2 | 448N * ♦ 6 6 0 | 15 30 15 0 | 20 60 60 20 0 | 15 60 90 60 15 0 | 6 30 60 60 30 6 0 | 1 6 15 20 15 6 1 0 . . . . . . . x | 2 | * 448N ♦ 0 6 6 | 0 15 30 15 | 0 20 60 60 20 | 0 15 60 90 60 15 | 0 6 30 60 60 30 6 | 0 1 6 15 20 15 6 1 ----------------+------+-----------+-----------------+-----------------------+-----------------------------+-----------------------------+--------------------------------+-------------------------- x4o . . . . . . | 4 | 4 0 | 672N * * ♦ 5 5 0 0 | 10 20 10 0 0 | 10 30 30 10 0 0 | 5 20 30 20 5 0 0 | 1 5 10 10 5 1 0 0 x . . . . . . x | 4 | 2 2 | * 1344N * ♦ 0 5 5 0 | 0 10 20 10 0 | 0 10 30 30 10 0 | 0 5 20 30 20 5 0 | 0 1 5 10 10 5 1 0 . . . . . . o4x | 4 | 0 4 | * * 672N ♦ 0 0 5 5 | 0 0 10 20 10 | 0 0 10 30 30 10 | 0 0 5 20 30 20 5 | 0 0 1 5 10 10 5 1 ----------------+------+-----------+-----------------+-----------------------+-----------------------------+-----------------------------+--------------------------------+-------------------------- x4o3o . . . . . ♦ 8 | 12 0 | 6 0 0 | 560N * * * ♦ 4 4 0 0 0 | 6 12 6 0 0 0 | 4 12 12 4 0 0 0 | 1 4 6 4 1 0 0 0 x4o . . . . . x ♦ 8 | 8 4 | 2 4 0 | * 1680N * * ♦ 0 4 4 0 0 | 0 6 12 6 0 0 | 0 4 12 12 4 0 0 | 0 1 4 6 4 1 0 0 x . . . . . o4x ♦ 8 | 4 8 | 0 4 2 | * * 1680N * ♦ 0 0 4 4 0 | 0 0 6 12 6 0 | 0 0 4 12 12 4 0 | 0 0 1 4 6 4 1 0 . . . . . o3o4x ♦ 8 | 0 12 | 0 0 6 | * * * 560N ♦ 0 0 0 4 4 | 0 0 0 6 12 6 | 0 0 0 4 12 12 4 | 0 0 0 1 4 6 4 1 ----------------+------+-----------+-----------------+-----------------------+-----------------------------+-----------------------------+--------------------------------+-------------------------- x4o3o3o . . . . ♦ 16 | 32 0 | 24 0 0 | 8 0 0 0 | 280N * * * * ♦ 3 3 0 0 0 0 | 3 6 3 0 0 0 0 | 1 3 3 1 0 0 0 0 x4o3o . . . . x ♦ 16 | 24 8 | 12 12 0 | 2 6 0 0 | * 1120N * * * ♦ 0 3 3 0 0 0 | 0 3 6 3 0 0 0 | 0 1 3 3 1 0 0 0 x4o . . . . o4x ♦ 16 | 16 16 | 4 16 4 | 0 4 4 0 | * * 1680N * * ♦ 0 0 3 3 0 0 | 0 0 3 6 3 0 0 | 0 0 1 3 3 1 0 0 x . . . . o3o4x ♦ 16 | 8 24 | 0 12 12 | 0 0 6 2 | * * * 1120N * ♦ 0 0 0 3 3 0 | 0 0 0 3 6 3 0 | 0 0 0 1 3 3 1 0 . . . . o3o3o4x ♦ 16 | 0 32 | 0 0 24 | 0 0 0 8 | * * * * 280N ♦ 0 0 0 0 3 3 | 0 0 0 0 3 6 3 | 0 0 0 0 1 3 3 1 ----------------+------+-----------+-----------------+-----------------------+-----------------------------+-----------------------------+--------------------------------+-------------------------- x4o3o3o3o . . . ♦ 32 | 80 0 | 80 0 0 | 40 0 0 0 | 10 0 0 0 0 | 84N * * * * * | 2 2 0 0 0 0 0 | 1 2 1 0 0 0 0 0 x4o3o3o . . . x ♦ 32 | 64 16 | 48 32 0 | 16 24 0 0 | 2 8 0 0 0 | * 420N * * * * | 0 2 2 0 0 0 0 | 0 1 2 1 0 0 0 0 x4o3o . . . o4x ♦ 32 | 48 32 | 24 48 8 | 4 24 12 0 | 0 4 6 0 0 | * * 840N * * * | 0 0 2 2 0 0 0 | 0 0 1 2 1 0 0 0 x4o . . . o3o4x ♦ 32 | 32 48 | 8 48 24 | 0 12 24 4 | 0 0 6 4 0 | * * * 840N * * | 0 0 0 2 2 0 0 | 0 0 0 1 2 1 0 0 x . . . o3o3o4x ♦ 32 | 16 64 | 0 32 48 | 0 0 24 16 | 0 0 0 8 2 | * * * * 420N * | 0 0 0 0 2 2 0 | 0 0 0 0 1 2 1 0 . . . o3o3o3o4x ♦ 32 | 0 80 | 0 0 80 | 0 0 0 40 | 0 0 0 0 10 | * * * * * 84N | 0 0 0 0 0 2 2 | 0 0 0 0 0 1 2 1 ----------------+------+-----------+-----------------+-----------------------+-----------------------------+-----------------------------+--------------------------------+-------------------------- x4o3o3o3o3o . . ♦ 64 | 192 0 | 240 0 0 | 160 0 0 0 | 60 0 0 0 0 | 12 0 0 0 0 0 | 14N * * * * * * | 1 1 0 0 0 0 0 0 x4o3o3o3o . . x ♦ 64 | 160 32 | 160 80 0 | 80 80 0 0 | 20 40 0 0 0 | 2 10 0 0 0 0 | * 84N * * * * * | 0 1 1 0 0 0 0 0 x4o3o3o . . o4x ♦ 64 | 128 64 | 96 128 16 | 32 96 32 0 | 4 32 24 0 0 | 0 4 8 0 0 0 | * * 210N * * * * | 0 0 1 1 0 0 0 0 x4o3o . . o3o4x ♦ 64 | 96 96 | 48 144 48 | 8 72 72 8 | 0 12 36 12 0 | 0 0 6 6 0 0 | * * * 280N * * * | 0 0 0 1 1 0 0 0 x4o . . o3o3o4x ♦ 64 | 64 128 | 16 128 96 | 0 32 96 32 | 0 0 24 32 4 | 0 0 0 8 4 0 | * * * * 210N * * | 0 0 0 0 1 1 0 0 x . . o3o3o3o4x ♦ 64 | 32 160 | 0 80 160 | 0 0 80 80 | 0 0 0 40 20 | 0 0 0 0 10 2 | * * * * * 84N * | 0 0 0 0 0 1 1 0 . . o3o3o3o3o4x ♦ 64 | 0 192 | 0 0 240 | 0 0 0 160 | 0 0 0 0 60 | 0 0 0 0 0 12 | * * * * * * 14N | 0 0 0 0 0 0 1 1 ----------------+------+-----------+-----------------+-----------------------+-----------------------------+-----------------------------+--------------------------------+-------------------------- x4o3o3o3o3o3o . ♦ 128 | 448 0 | 672 0 0 | 560 0 0 0 | 280 0 0 0 0 | 84 0 0 0 0 0 | 14 0 0 0 0 0 0 | N * * * * * * * x4o3o3o3o3o . x ♦ 128 | 384 64 | 480 192 0 | 320 240 0 0 | 120 160 0 0 0 | 24 60 0 0 0 0 | 2 12 0 0 0 0 0 | * 7N * * * * * * x4o3o3o3o . o4x ♦ 128 | 320 128 | 320 320 32 | 160 320 80 0 | 40 160 80 0 0 | 4 40 40 0 0 0 | 0 4 10 0 0 0 0 | * * 21N * * * * * x4o3o3o . o3o4x ♦ 128 | 256 192 | 192 384 96 | 64 288 192 16 | 8 96 144 32 0 | 0 12 48 24 0 0 | 0 0 6 8 0 0 0 | * * * 35N * * * * x4o3o . o3o3o4x ♦ 128 | 192 256 | 96 384 192 | 16 192 288 64 | 0 32 144 96 8 | 0 0 24 48 12 0 | 0 0 0 8 6 0 0 | * * * * 35N * * * x4o . o3o3o3o4x ♦ 128 | 128 320 | 32 320 320 | 0 80 320 160 | 0 0 80 160 40 | 0 0 0 40 40 4 | 0 0 0 0 10 4 0 | * * * * * 21N * * x . o3o3o3o3o4x ♦ 128 | 64 384 | 0 192 480 | 0 0 240 320 | 0 0 0 160 120 | 0 0 0 0 60 24 | 0 0 0 0 0 12 2 | * * * * * * 7N * . o3o3o3o3o3o4x ♦ 128 | 0 448 | 0 0 672 | 0 0 0 560 | 0 0 0 0 280 | 0 0 0 0 0 84 | 0 0 0 0 0 0 14 | * * * * * * * N
© 2004-2025 | top of page |