| Acronym | octet | 
| Name | 
alternated cubic honeycomb, tetrahedral-octahedral honeycomb, Delone complex of face-centered cubic (fcc) lattice  | 
  | |
| VRML | 
  | 
| Vertex figure | 
  | 
| Coordinates | (i/sqrt(2), j/sqrt(2), k/sqrt(2)) for integers i,j,k with i+j+k even | 
| Dual | radh | 
| Confer | 
	
  | 
| 
External links  | 
 
 | 
When each oct would be considered an exterior blend of 2 squippies (using parallel intersection planes), this very honeycomb becomes 10Y4-8T-0.
This honeycomb can be considered as the inifinite blend (or stack) of a single monostratic slab thereof, which is squatap. Likewise it can be considered as the inifinite blend (or stack) of an other single monostratic slab thereof, which is tratap.
In order to understand the relation between the octet and fcc, take a first oct completely inscribed into the cube (its face centers). Next attach 8 tets onto its faces. Those then would connect to the corners of the cube. Their outer edges then describe an x-cross onto every face of the cube. The remainder of the cubical domain is filled along either edge by exactly one quarter of a further oct. As the primitive cubical honycomb (chon) has 4 cubes around each edge, this completes then those octs again. Thus indeed, the vertex set of octet is the fcc lattice.
As finite modwrap of this honeycomb occurs the tomotope, when restricting the below N to the value 4 instead; B. Manson and E. Schulte further described a different modwrap for N equals 8 too. However, both replace therein the octs by their hemiversion, i.e. by ellocts.
Incidence matrix according to Dynkin symbol
x3o3o *b4o (N → ∞) . . . . | N ♦ 12 | 24 | 8 6 -----------+---+----+----+----- x . . . | 2 | 6N | 4 | 2 2 -----------+---+----+----+----- x3o . . | 3 | 3 | 8N | 1 1 -----------+---+----+----+----- x3o3o . ♦ 4 | 6 | 4 | 2N * x3o . *b4o ♦ 6 | 12 | 8 | * N
x3o3o *b4/3o (N → ∞) . . . . | N ♦ 12 | 24 | 8 6 -------------+---+----+----+----- x . . . | 2 | 6N | 4 | 2 2 -------------+---+----+----+----- x3o . . | 3 | 3 | 8N | 1 1 -------------+---+----+----+----- x3o3o . ♦ 4 | 6 | 4 | 2N * x3o . *b4/3o ♦ 6 | 12 | 8 | * N
x3o3o3o3*a (N → ∞) . . . . | N ♦ 12 | 12 12 | 4 6 4 -----------+---+----+-------+------ x . . . | 2 | 6N | 2 2 | 1 2 1 -----------+---+----+-------+------ x3o . . | 3 | 3 | 4N * | 1 1 0 x . . o3*a | 3 | 3 | * 4N | 0 1 1 -----------+---+----+-------+------ x3o3o . ♦ 4 | 6 | 4 0 | N * * x3o . o3*a ♦ 6 | 12 | 4 4 | * N * x . o3o3*a ♦ 4 | 6 | 0 4 | * * N
x3o3o3/2o3/2*a (N → ∞) . . . . | N ♦ 12 | 12 12 | 4 6 4 ---------------+---+----+-------+------ x . . . | 2 | 6N | 2 2 | 1 2 1 ---------------+---+----+-------+------ x3o . . | 3 | 3 | 4N * | 1 1 0 x . . o3/2*a | 3 | 3 | * 4N | 0 1 1 ---------------+---+----+-------+------ x3o3o . ♦ 4 | 6 | 4 0 | N * * x3o . o3/2*a ♦ 6 | 12 | 4 4 | * N * x . o3/2o3/2*a ♦ 4 | 6 | 0 4 | * * N
x3o3/2o3/2o3*a (N → ∞) . . . . | N ♦ 12 | 12 12 | 4 6 4 ---------------+---+----+-------+------ x . . . | 2 | 6N | 2 2 | 1 2 1 ---------------+---+----+-------+------ x3o . . | 3 | 3 | 4N * | 1 1 0 x . . o3*a | 3 | 3 | * 4N | 0 1 1 ---------------+---+----+-------+------ x3o3/2o . ♦ 4 | 6 | 4 0 | N * * x3o . o3*a ♦ 6 | 12 | 4 4 | * N * x . o3/2o3*a ♦ 4 | 6 | 0 4 | * * N
x3/2o3o3o3/2*a (N → ∞) . . . . | N ♦ 12 | 12 12 | 4 6 4 ---------------+---+----+-------+------ x . . . | 2 | 6N | 2 2 | 1 2 1 ---------------+---+----+-------+------ x3/2o . . | 3 | 3 | 4N * | 1 1 0 x . . o3/2*a | 3 | 3 | * 4N | 0 1 1 ---------------+---+----+-------+------ x3/2o3o . ♦ 4 | 6 | 4 0 | N * * x3/2o . o3/2*a ♦ 6 | 12 | 4 4 | * N * x . o3o3/2*a ♦ 4 | 6 | 0 4 | * * N
s4o3o4o   (N → ∞)
demi( . . . . ) | N ♦ 12 | 24 |  8 6
----------------+---+----+----+-----
      s4o . .   | 2 | 6N |  4 |  2 2
----------------+---+----+----+-----
sefa( s4o3o . ) | 3 |  3 | 8N |  1 1
----------------+---+----+----+-----
      s4o3o .   ♦ 4 |  6 |  4 | 2N *
sefa( s4o3o4o ) ♦ 6 | 12 |  8 |  * N
starting figure: x4o3o4o
s4o3o4s   (N → ∞)
demi( . . . . )    | 2N ♦  6  6 |  6  18 | 2  6  6
-------------------+----+-------+--------+--------
      s4o . .    & |  2 | 6N  * |  2   2 | 1  1  2
      s . . s    & |  2 |  * 6N |  0   4 | 0  2  2
-------------------+----+-------+--------+--------
sefa( s4o3o . )  & |  3 |  3  0 | 4N   * | 1  0  1
sefa( s4o . s )  & |  3 |  1  2 |  * 12N | 0  1  1
-------------------+----+-------+--------+--------
      s4o3o .    & ♦  4 |  6  0 |  4   0 | N  *  *
      s4o . s    & ♦  4 |  2  4 |  0   4 | * 3N  *
sefa( s4o3o4s )    ♦  6 |  6  6 |  2   6 | *  * 2N
starting figure: x4o3o4x
o3o3o *b4s   (N → ∞)
demi( . . .    . ) | N ♦ 12 | 12 12 | 4 4 6
-------------------+---+----+-------+------
      . o . *b4s   | 2 | 6N |  2  2 | 1 1 2
-------------------+---+----+-------+------
sefa( o3o . *b4s ) | 3 |  3 | 4N  * | 1 0 1
sefa( . o3o *b4s ) | 3 |  3 |  * 4N | 0 1 1
-------------------+---+----+-------+------
      o3o . *b4s   ♦ 4 |  6 |  4  0 | N * *
      . o3o *b4s   ♦ 4 |  6 |  0  4 | * N *
sefa( o3o3o *b4s ) ♦ 6 | 12 |  4  4 | * * N
starting figure: o3o3o *b4x
s∞o2s4o4o   (N → ∞)
demi( . . . . . ) | N ♦  8  4 | 24 |  8 6
------------------+---+-------+----+-----
      s 2 s . .   | 2 | 4N  * |  4 |  2 2
      . . s4o .   | 2 |  * 2N |  4 |  2 2
------------------+---+-------+----+-----
sefa( s 2 s4o . ) | 3 |  2  1 | 8N |  1 1
------------------+---+-------+----+-----
      s 2 s4o .   ♦ 4 |  4  2 |  4 | 2N *
sefa( s∞o2s4o4o ) ♦ 6 |  8  4 |  8 |  * N
starting figure: x∞o x4o4o
s∞o2o4s4o   (N → ∞)
demi( . . . . . ) | N ♦  8 2 2 | 12 12 | 4 4 6
------------------+---+--------+-------+------
      s 2 . s .   | 2 | 4N * * |  2  2 | 1 1 2
      . . o4s .   | 2 |  * N * |  4  0 | 2 0 2
      . . . s4o   | 2 |  * * N |  0  4 | 0 2 2
------------------+---+--------+-------+------
sefa( s 2 o4s . ) | 3 |  2 1 0 | 4N  * | 1 0 1
sefa( s 2 . s4o ) | 3 |  2 0 1 |  * 4N | 0 1 1
------------------+---+--------+-------+------
      s 2 o4s .   ♦ 4 |  4 2 0 |  4  0 | N * *
      s 2 . s4o   ♦ 4 |  4 0 2 |  0  4 | * N *
sefa( s∞o2o4s4o ) ♦ 6 |  8 2 2 |  4  4 | * * N
starting figure: x∞o o4x4o
xo3xo3ox3ox3*a&#zx (N → ∞) → height = 0 o.3o.3o.3o.3*a & | 4N ♦ 3 3 6 | 3 3 9 9 | 1 1 6 3 3 ---------------------+----+-----------+---------------+------------- x. .. .. .. & | 2 | 6N * * | 2 0 2 0 | 1 0 1 2 0 .. x. .. .. & | 2 | * 6N * | 0 2 0 2 | 0 1 1 0 2 oo3oo3oo3oo3*a&#x | 2 | * * 12N | 0 0 2 2 | 0 0 2 1 1 ---------------------+----+-----------+---------------+------------- x. .. .. o.3*a & | 3 | 3 0 0 | 4N * * * | 1 0 0 1 0 .. x.3o. .. & | 3 | 0 3 0 | * 4N * * | 0 1 0 0 1 xo .. .. .. &#x & | 3 | 1 0 2 | * * 12N * | 0 0 1 1 0 .. xo .. .. &#x & | 3 | 0 1 2 | * * * 12N | 0 0 1 0 1 ---------------------+----+-----------+---------------+------------- x. .. o.3o.3*a & ♦ 4 | 6 0 0 | 4 0 0 0 | N * * * * .. x.3o.3o. & ♦ 4 | 0 6 0 | 0 4 0 0 | * N * * * xo .. ox .. &#x & ♦ 4 | 1 1 4 | 0 0 2 2 | * * 6N * * xo .. .. ox3*a&#x ♦ 6 | 6 0 6 | 2 0 6 0 | * * * 2N * .. xo3ox .. &#x ♦ 6 | 0 6 6 | 0 2 0 6 | * * * * 2N
or o.3o.3o.3o.3*a & | 2N ♦ 6 6 | 6 18 | 2 6 6 ---------------------+----+-------+--------+-------- x. .. .. .. & | 2 | 6N * | 2 2 | 1 1 2 oo3oo3oo3oo3*a&#x | 2 | * 6N | 0 4 | 0 2 2 ---------------------+----+-------+--------+-------- x. .. .. o.3*a & | 3 | 3 0 | 4N * | 1 0 1 xo .. .. .. &#x & | 3 | 1 2 | * 12N | 0 1 1 ---------------------+----+-------+--------+-------- x. .. o.3o.3*a & ♦ 4 | 6 0 | 4 0 | N * * xo .. ox .. &#x & ♦ 4 | 2 4 | 0 4 | * 3N * xo .. .. ox3*a&#x & ♦ 6 | 6 6 | 2 6 | * * 2N
:xoo:3:oxo:3:oox:3*a&##x (N → ∞) → all heights = sqrt(2/3) = 0.816497 o.. 3 o.. 3 o.. 3*a | N * * ♦ 6 3 3 0 0 0 | 3 3 6 3 6 3 0 0 0 0 0 0 | 3 3 1 3 3 1 0 0 0 .o. 3 .o. 3 .o. 3*a | * N * ♦ 0 3 0 6 3 0 | 0 0 3 6 0 0 3 3 6 3 0 0 | 3 1 3 0 0 0 3 1 3 ..o 3 ..o 3 ..o 3*a | * * N ♦ 0 0 3 0 3 6 | 0 0 0 0 3 6 0 0 3 6 3 3 | 0 0 0 1 3 3 1 3 3 ------------------------+-------+-------------------+-------------------------------+------------------ x.. ... ... | 2 0 0 | 3N * * * * * | 1 1 1 0 1 0 0 0 0 0 0 0 | 1 1 0 1 1 0 0 0 0 oo. 3 oo. 3 oo. 3*a&#x | 1 1 0 | * 3N * * * * | 0 0 2 2 0 0 0 0 0 0 0 0 | 2 1 1 0 0 0 0 0 0 :o.o:3:o.o:3:o.o:3*a&#x | 1 0 1 | * * 3N * * * | 0 0 0 0 2 2 0 0 0 0 0 0 | 0 0 0 1 2 1 0 0 0 ... .x. ... | 0 2 0 | * * * 3N * * | 0 0 0 1 0 0 1 1 1 0 0 0 | 1 0 1 0 0 0 1 0 1 .oo 3 .oo 3 .oo 3*a&#x | 0 1 1 | * * * * 3N * | 0 0 0 0 0 0 0 0 2 2 0 0 | 0 0 0 0 0 0 1 1 2 ... ... ..x | 0 0 2 | * * * * * 3N | 0 0 0 0 0 1 0 0 0 1 1 1 | 0 0 0 0 1 1 0 1 1 ------------------------+-------+-------------------+-------------------------------+------------------ x.. 3 o.. ... | 3 0 0 | 3 0 0 0 0 0 | N * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0 x.. ... o.. 3*a | 3 0 0 | 3 0 0 0 0 0 | * N * * * * * * * * * * | 0 1 0 0 1 0 0 0 0 xo. ... ... &#x | 2 1 0 | 1 2 0 0 0 0 | * * 3N * * * * * * * * * | 1 1 0 0 0 0 0 0 0 ... ox. ... &#x | 1 2 0 | 0 2 0 1 0 0 | * * * 3N * * * * * * * * | 1 0 1 0 0 0 0 0 0 :x.o: :...: :...: &#x | 2 0 1 | 1 0 2 0 0 0 | * * * * 3N * * * * * * * | 0 0 0 1 1 0 0 0 0 :...: :...: :o.x: &#x | 1 0 2 | 0 0 2 0 0 1 | * * * * * 3N * * * * * * | 0 0 0 0 1 1 0 0 0 .o. 3 .x. ... | 0 3 0 | 0 0 0 3 0 0 | * * * * * * N * * * * * | 1 0 0 0 0 0 1 0 0 ... .x. 3 .o. | 0 3 0 | 0 0 0 3 0 0 | * * * * * * * N * * * * | 0 0 1 0 0 0 0 0 1 ... .xo ... &#x | 0 2 1 | 0 0 0 1 2 0 | * * * * * * * * 3N * * * | 0 0 0 0 0 0 1 0 1 ... ... .ox &#x | 0 1 2 | 0 0 0 0 2 1 | * * * * * * * * * 3N * * | 0 0 0 0 0 0 0 1 1 ..o ... ..x 3*a | 0 0 3 | 0 0 0 0 0 3 | * * * * * * * * * * N * | 0 0 0 0 1 0 0 1 0 ... ..o 3 ..x 3*a | 0 0 3 | 0 0 0 0 0 3 | * * * * * * * * * * * N | 0 0 0 0 0 1 0 0 1 ------------------------+-------+-------------------+-------------------------------+------------------ xo. 3 ox. ... &#x ♦ 3 3 0 | 3 6 0 3 0 0 | 1 0 3 3 0 0 1 0 0 0 0 0 | N * * * * * * * * xo. ... oo. 3*a&#x ♦ 3 1 0 | 3 3 0 0 0 0 | 0 1 3 0 0 0 0 0 0 0 0 0 | * N * * * * * * * ... ox. oo. &#x ♦ 1 3 0 | 0 3 0 3 0 0 | 0 0 0 3 0 0 0 1 0 0 0 0 | * * N * * * * * * :x.o:3:o.o: :...: &#x ♦ 3 0 1 | 3 0 3 0 0 0 | 1 0 0 0 3 0 0 0 0 0 0 0 | * * * N * * * * * :x.o: :...: :o.x:3*a&#x ♦ 3 0 3 | 3 0 6 0 0 3 | 0 1 0 0 3 3 0 0 0 0 1 0 | * * * * N * * * * :...: :o.o: :o.x: &#x ♦ 1 0 3 | 0 0 3 0 0 3 | 0 0 0 0 0 3 0 0 0 0 0 1 | * * * * * N * * * .oo 3 .xo ... &#x ♦ 0 3 1 | 0 0 0 3 3 0 | 0 0 0 0 0 0 1 0 3 0 0 0 | * * * * * * N * * .oo ... .ox 3*a&#x ♦ 0 1 3 | 0 0 0 0 3 3 | 0 0 0 0 0 0 0 0 0 3 1 0 | * * * * * * * N * ... .xo 3 .ox &#x ♦ 0 3 3 | 0 0 0 3 6 3 | 0 0 0 0 0 0 0 1 3 3 0 1 | * * * * * * * * N
:xo:4:oo:4:ox:&##x (N → ∞) → all heights = 1/sqrt(2) = 0.707107 o. 4 o. 4 o. | N * ♦ 4 4 4 0 | 8 4 8 4 | 4 4 4 2 .o 4 .o 4 .o | * N ♦ 0 4 4 4 | 4 8 4 8 | 2 4 4 4 -------------------+-----+-------------+-------------+---------- x. .. .. | 2 0 | 2N * * * | 2 0 2 0 | 2 1 1 0 oo 4 oo 4 oo &#x | 1 1 | * 4N * * | 2 2 0 0 | 1 2 0 1 :oo:4:oo:4:oo:&#x | 1 1 | * * 4N * | 0 0 2 2 | 1 0 2 1 .. .. .x | 0 2 | * * * 2N | 0 2 0 2 | 0 1 1 2 -------------------+-----+-------------+-------------+---------- xo .. .. &#x | 2 1 | 1 2 0 0 | 4N * * * | 1 1 0 0 .. .. ox &#x | 1 2 | 0 2 0 1 | * 4N * * | 0 1 0 1 :xo: .. .. &#x | 2 1 | 1 0 2 0 | * * 4N * | 1 0 1 0 .. .. :ox:&#x | 1 2 | 0 0 2 1 | * * * 4N | 0 0 1 1 -------------------+-----+-------------+-------------+---------- :xo:4:oo: .. &#xt ♦ 4 2 | 4 4 4 0 | 4 0 4 0 | N * * * xo .. ox &#x ♦ 2 2 | 1 4 0 1 | 2 2 0 0 | * 2N * * :xo: .. :ox:&#x ♦ 2 2 | 1 0 4 1 | 0 0 2 2 | * * 2N * .. :oo:4:ox:&#xt ♦ 2 4 | 0 4 4 4 | 0 4 0 4 | * * * N
4-colored( :xo:4:oo:4:ox:&##x )   (N → ∞)   → all heights = 1/sqrt(2) = 0.707107
hemi_a(  o. 4 o. 4 o.     ) | N * * * ♦  4  2  2  0  0  2  2  0  0  0 |  4  4  4  0  4  4  4  0 | 2 2  4  4 2 0
hemi_b(  o. 4 o. 4 o.     ) | * N * * ♦  4  0  0  2  2  0  0  2  2  0 |  4  4  0  4  4  4  0  4 | 2 2  4  4 0 2
hemi_a( .o 4 .o 4 .o      ) | * * N * ♦  0  2  0  2  0  2  0  2  0  4 |  4  0  4  4  4  0  4  4 | 2 0  4  4 2 2
hemi_b( .o 4 .o 4 .o      ) | * * * N ♦  0  0  2  0  2  0  2  0  2  4 |  0  4  4  4  0  4  4  4 | 0 2  4  4 2 2
----------------------------+---------+-------------------------------+-------------------------+--------------
        x.   ..   ..        | 1 1 0 0 | 4N  *  *  *  *  *  *  *  *  * |  1  1  0  0  1  1  0  0 | 1 1  1  1 0 0
qu._aa( oo 4 oo 4 oo &#x  ) | 1 0 1 0 |  * 2N  *  *  *  *  *  *  *  * |  2  0  2  0  0  0  0  0 | 1 0  2  0 1 0
qu._ab( oo 4 oo 4 oo &#x  ) | 1 0 0 1 |  *  * 2N  *  *  *  *  *  *  * |  0  2  2  0  0  0  0  0 | 0 1  2  0 1 0
qu._ba( oo 4 oo 4 oo &#x  ) | 0 1 1 0 |  *  *  * 2N  *  *  *  *  *  * |  2  0  0  2  0  0  0  0 | 1 0  2  0 0 1
qu._bb( oo 4 oo 4 oo &#x  ) | 0 1 0 1 |  *  *  *  * 2N  *  *  *  *  * |  0  2  0  2  0  0  0  0 | 0 1  2  0 0 1
qu._aa(:oo:4:oo:4:oo:&#x  ) | 1 0 1 0 |  *  *  *  *  * 2N  *  *  *  * |  0  0  0  0  2  0  2  0 | 1 0  0  2 1 0
qu._ab(:oo:4:oo:4:oo:&#x  ) | 1 0 0 1 |  *  *  *  *  *  * 2N  *  *  * |  0  0  0  0  0  2  2  0 | 0 1  0  2 1 0
qu._ba(:oo:4:oo:4:oo:&#x  ) | 0 1 1 0 |  *  *  *  *  *  *  * 2N  *  * |  0  0  0  0  2  0  0  2 | 1 0  0  2 0 1
qu._bb(:oo:4:oo:4:oo:&#x  ) | 0 1 0 1 |  *  *  *  *  *  *  *  * 2N  * |  0  0  0  0  0  2  0  2 | 0 1  0  2 0 1
        ..   ..   .x        | 0 0 1 1 |  *  *  *  *  *  *  *  *  * 4N |  0  0  1  1  0  0  1  1 | 0 0  1  1 1 1
----------------------------+---------+-------------------------------+-------------------------+--------------
hemi_a( xo   ..   .. &#x  ) | 1 1 1 0 |  1  1  0  1  0  0  0  0  0  0 | 4N  *  *  *  *  *  *  * | 1 0  1  0 0 0
hemi_b( xo   ..   .. &#x  ) | 1 1 0 1 |  1  0  1  0  1  0  0  0  0  0 |  * 4N  *  *  *  *  *  * | 0 1  1  0 0 0
hemi_a( ..   ..   ox &#x  ) | 1 0 1 1 |  0  1  1  0  0  0  0  0  0  1 |  *  * 4N  *  *  *  *  * | 0 0  1  0 1 0
hemi_b( ..   ..   ox &#x  ) | 0 1 1 1 |  0  0  0  1  1  0  0  0  0  1 |  *  *  * 4N  *  *  *  * | 0 0  1  0 0 1
hemi_a(:xo:  ..   .. &#x  ) | 1 1 1 0 |  1  0  0  0  0  1  0  1  0  0 |  *  *  *  * 4N  *  *  * | 1 0  0  1 0 0
hemi_b(:xo:  ..   .. &#x  ) | 1 1 0 1 |  1  0  0  0  0  0  1  0  1  0 |  *  *  *  *  * 4N  *  * | 0 1  0  1 0 0
hemi_a( ..   ..  :ox:&#x  ) | 1 0 1 1 |  0  0  0  0  0  1  1  0  0  1 |  *  *  *  *  *  * 4N  * | 0 0  0  1 1 0
hemi_b( ..   ..  :ox:&#x  ) | 0 1 1 1 |  0  0  0  0  0  0  0  1  1  1 |  *  *  *  *  *  *  * 4N | 0 0  0  1 0 1
----------------------------+---------+-------------------------------+-------------------------+--------------
hemi_a(:xo:4:oo:  .. &#xt ) ♦ 2 2 2 0 |  4  2  0  2  0  2  0  2  0  0 |  4  0  0  0  4  0  0  0 | N *  *  * * *
hemi_b(:xo:4:oo:  .. &#xt ) ♦ 2 2 0 2 |  4  0  2  0  2  0  2  0  2  0 |  0  4  0  0  0  4  0  0 | * N  *  * * *
        xo   ..   ox &#x    ♦ 1 1 1 1 |  1  1  1  1  1  0  0  0  0  1 |  1  1  1  1  0  0  0  0 | * * 4N  * * *
       :xo:  ..  :ox:&#x    ♦ 1 1 1 1 |  1  0  0  0  0  1  1  1  1  1 |  0  0  0  0  1  1  1  1 | * *  * 4N * *
hemi_a( ..  :oo:4:ox:&#xt ) ♦ 2 0 2 2 |  0  2  2  0  0  2  2  0  0  4 |  0  0  4  0  0  0  4  0 | * *  *  * N *
hemi_b( ..  :oo:4:ox:&#xt ) ♦ 0 2 2 2 |  0  0  0  2  2  0  0  2  2  4 |  0  0  0  4  0  0  0  4 | * *  *  * * N
© 2004-2025  | top of page |