Acronym | octdip |
Name |
octahedron-octahedron duoprism, dual of Delone cell of lattice D6*, vertex figure of traxh |
Circumradius | 1 |
Coordinates | (1/sqrt(2), 0, 0, 1/sqrt(2), 0, 0) & all permutations in the first 3 as well as last 3 coordinates, all changes of sign |
Volume | 2/9 = 0.222222 |
Face vector | 36, 144, 240, 204, 88, 16 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x3o4o x3o4o . . . . . . | 36 | 4 4 | 4 16 4 | 1 16 16 1 | 4 16 4 | 4 4 ------------+----+-------+-----------+-----------+----------+---- x . . . . . | 2 | 72 * | 2 4 0 | 1 8 4 0 | 4 8 1 | 4 2 . . . x . . | 2 | * 72 | 0 4 2 | 0 4 8 1 | 1 8 4 | 2 4 ------------+----+-------+-----------+-----------+----------+---- x3o . . . . | 3 | 3 0 | 48 * * | 1 4 0 0 | 4 4 0 | 4 1 x . . x . . | 4 | 2 2 | * 144 * | 0 2 2 0 | 1 4 1 | 2 2 . . . x3o . | 3 | 0 3 | * * 48 | 0 0 4 1 | 0 4 4 | 1 4 ------------+----+-------+-----------+-----------+----------+---- x3o4o . . . ♦ 6 | 12 0 | 8 0 0 | 6 * * * | 4 0 0 | 4 0 x3o . x . . ♦ 6 | 6 3 | 2 3 0 | * 96 * * | 1 2 0 | 2 1 x . . x3o . ♦ 6 | 3 6 | 0 3 2 | * * 96 * | 0 2 1 | 1 2 . . . x3o4o ♦ 6 | 0 12 | 0 0 8 | * * * 6 | 0 0 4 | 0 4 ------------+----+-------+-----------+-----------+----------+---- x3o4o x . . ♦ 12 | 24 6 | 16 12 0 | 2 8 0 0 | 12 * * | 2 0 x3o . x3o . ♦ 9 | 9 9 | 3 9 3 | 0 3 3 0 | * 64 * | 1 1 x . . x3o4o ♦ 12 | 6 24 | 0 12 16 | 0 0 8 2 | * * 12 | 0 2 ------------+----+-------+-----------+-----------+----------+---- x3o4o x3o . ♦ 18 | 36 18 | 24 36 6 | 3 24 12 0 | 3 8 0 | 8 * x3o . x3o4o ♦ 18 | 18 36 | 6 36 24 | 0 12 24 3 | 0 8 3 | * 8
or . . . . . . | 36 | 8 | 8 16 | 2 32 | 8 16 | 8 ---------------+----+-----+--------+--------+-------+--- x . . . . . & | 2 | 144 | 2 4 | 1 12 | 5 8 | 6 ---------------+----+-----+--------+--------+-------+--- x3o . . . . & | 3 | 3 | 96 * | 1 4 | 4 4 | 5 x . . x . . | 4 | 4 | * 144 | 0 4 | 2 4 | 4 ---------------+----+-----+--------+--------+-------+--- x3o4o . . . & ♦ 6 | 12 | 8 0 | 12 * | 4 0 | 4 x3o . x . . ♦ 6 | 9 | 2 3 | * 192 | 1 2 | 3 ---------------+----+-----+--------+--------+-------+--- x3o4o x . . & ♦ 12 | 30 | 16 12 | 2 8 | 24 * | 2 x3o . x3o . ♦ 9 | 18 | 6 9 | 0 6 | * 64 | 2 ---------------+----+-----+--------+--------+-------+--- x3o4o x3o . & ♦ 18 | 54 | 30 36 | 3 36 | 3 8 | 16
o3x3o x3o4o . . . . . . | 36 | 4 4 | 2 2 16 4 | 1 8 8 16 1 | 4 8 8 4 | 4 2 2 ------------+----+-------+--------------+--------------+-------------+------ . x . . . . | 2 | 72 * | 1 1 4 0 | 1 4 4 4 0 | 4 4 4 1 | 4 1 1 . . . x . . | 2 | * 72 | 0 0 4 2 | 0 2 2 8 1 | 1 4 4 4 | 2 2 2 ------------+----+-------+--------------+--------------+-------------+------ o3x . . . . | 3 | 3 0 | 24 * * * | 1 4 0 0 0 | 4 4 0 0 | 4 1 0 . x3o . . . | 3 | 3 0 | * 24 * * | 1 0 4 0 0 | 4 0 4 0 | 4 0 1 . x . x . . | 4 | 2 2 | * * 144 * | 0 1 1 2 0 | 1 2 2 1 | 2 1 1 . . . x3o . | 3 | 0 3 | * * * 48 | 0 0 0 4 1 | 0 2 2 4 | 1 2 2 ------------+----+-------+--------------+--------------+-------------+------ o3x3o . . . ♦ 6 | 12 0 | 4 4 0 0 | 6 * * * * | 4 0 0 0 | 4 0 0 o3x . x . . ♦ 6 | 6 3 | 2 0 3 0 | * 48 * * * | 1 2 0 0 | 2 1 0 . x3o x . . ♦ 6 | 6 3 | 0 2 3 0 | * * 48 * * | 1 0 2 0 | 2 0 1 . x . x3o . ♦ 6 | 3 6 | 0 0 3 2 | * * * 96 * | 0 1 1 1 | 1 1 1 . . . x3o4o ♦ 6 | 0 12 | 0 0 0 8 | * * * * 6 | 0 0 0 4 | 0 2 2 ------------+----+-------+--------------+--------------+-------------+------ o3x3o x . . ♦ 12 | 24 6 | 8 8 12 0 | 2 4 4 0 0 | 12 * * * | 2 0 0 o3x . x3o . ♦ 9 | 9 9 | 3 0 9 3 | 0 3 0 3 0 | * 32 * * | 1 1 0 . x3o x3o . ♦ 9 | 9 9 | 0 3 9 3 | 0 0 3 3 0 | * * 32 * | 1 0 1 . x . x3o4o ♦ 12 | 6 24 | 0 0 12 16 | 0 0 0 8 2 | * * * 12 | 0 1 1 ------------+----+-------+--------------+--------------+-------------+------ o3x3o x3o . ♦ 18 | 36 18 | 12 12 36 6 | 3 12 12 12 0 | 3 4 4 0 | 8 * * o3x . x3o4o ♦ 18 | 18 36 | 6 0 36 24 | 0 12 0 24 3 | 0 8 0 3 | * 4 * . x3o x3o4o ♦ 18 | 18 36 | 0 6 36 24 | 0 0 12 24 3 | 0 0 8 3 | * * 4
o3x3o o3x3o . . . . . . | 36 | 4 4 | 2 2 16 2 2 | 1 8 8 8 8 1 | 4 4 4 4 4 4 | 2 2 2 2 ------------+----+-------+-----------------+-----------------+-------------------+-------- . x . . . . | 2 | 72 * | 1 1 4 0 0 | 1 4 4 2 2 0 | 4 2 2 2 2 1 | 2 2 1 1 . . . . x . | 2 | * 72 | 0 0 4 1 1 | 0 2 2 4 4 1 | 1 2 2 2 2 4 | 1 1 2 2 ------------+----+-------+-----------------+-----------------+-------------------+-------- o3x . . . . | 3 | 3 0 | 24 * * * * | 1 4 0 0 0 0 | 4 2 2 0 0 0 | 2 2 1 0 . x3o . . . | 3 | 3 0 | * 24 * * * | 1 0 4 0 0 0 | 4 0 0 2 2 0 | 2 2 0 1 . x . . x . | 4 | 2 2 | * * 144 * * | 0 1 1 1 1 0 | 1 1 1 1 1 1 | 1 1 1 1 . . . o3x . | 3 | 0 3 | * * * 24 * | 0 0 0 4 0 1 | 0 2 0 2 0 4 | 1 0 2 2 . . . . x3o | 3 | 0 3 | * * * * 24 | 0 0 0 0 4 1 | 0 0 2 0 2 4 | 0 1 2 2 ------------+----+-------+-----------------+-----------------+-------------------+-------- o3x3o . . . ♦ 6 | 12 0 | 4 4 0 0 0 | 6 * * * * * | 4 0 0 0 0 0 | 2 2 0 0 o3x . . x . ♦ 6 | 6 3 | 2 0 3 0 0 | * 48 * * * * | 1 1 1 0 0 0 | 1 1 1 0 . x3o . x . ♦ 6 | 6 3 | 0 2 3 0 0 | * * 48 * * * | 1 0 0 1 1 0 | 1 1 0 1 . x . o3x . ♦ 6 | 3 6 | 0 0 3 2 0 | * * * 48 * * | 0 1 0 1 0 1 | 1 0 1 1 . x . . x3o ♦ 6 | 3 6 | 0 0 3 0 2 | * * * * 48 * | 0 0 1 0 1 1 | 0 1 1 1 . . . o3x3o ♦ 6 | 0 12 | 0 0 0 4 4 | * * * * * 6 | 0 0 0 0 0 4 | 0 0 2 2 ------------+----+-------+-----------------+-----------------+-------------------+-------- o3x3o . x . ♦ 12 | 24 6 | 8 8 12 0 0 | 2 4 4 0 0 0 | 12 * * * * * | 1 1 0 0 o3x . o3x . ♦ 9 | 9 9 | 3 0 9 3 0 | 0 3 0 3 0 0 | * 16 * * * * | 1 0 1 0 o3x . . x3o ♦ 9 | 9 9 | 3 0 9 0 3 | 0 3 0 0 3 0 | * * 16 * * * | 0 1 1 0 . x3o o3x . ♦ 9 | 9 9 | 0 3 9 3 0 | 0 0 3 3 0 0 | * * * 16 * * | 1 0 0 1 . x3o . x3o ♦ 9 | 9 9 | 0 3 9 0 3 | 0 0 3 0 3 0 | * * * * 16 * | 0 1 0 1 . x . o3x3o ♦ 12 | 6 24 | 0 0 12 8 8 | 0 0 0 4 4 2 | * * * * * 12 | 0 0 1 1 ------------+----+-------+-----------------+-----------------+-------------------+-------- o3x3o o3x . ♦ 18 | 36 18 | 12 12 36 6 0 | 3 12 12 12 0 0 | 3 4 0 4 0 0 | 4 * * * o3x3o . x3o ♦ 18 | 36 18 | 12 12 36 0 6 | 3 12 12 0 12 0 | 3 0 4 0 4 0 | * 4 * * o3x . o3x3o ♦ 18 | 18 36 | 6 0 36 12 12 | 0 12 0 12 12 3 | 0 4 4 0 0 3 | * * 4 * . x3o o3x3o ♦ 18 | 18 36 | 0 6 36 12 12 | 0 0 12 12 12 3 | 0 0 0 4 4 3 | * * * 4
© 2004-2025 | top of page |