Acronym | ... |
Name |
complex honeycomb xp-4-o2-4-or, δp,r3 |
Vertex figure | x2-4-or |
Dual | selfdual (as set) |
Especially | xp-4-o2-4-op (p=r) xp-4-o2-4-o2 (r=2) x2-4-o2-4-o2 (p=r=2) |
Confer |
|
External links |
These complex tilings require the pair p,r to be from 2,2 (then resulting again in the real squat); 3,2; 3,3; 4,2; 4,4; 6,2; 6,3; 6,6; or one of their reversions.
The below also used value q follows the further requirement: 1/p + 2/q + 1/r = 1.
Incidence matrix according to Dynkin symbol
xp-4-o2-4-or (N → ∞) . . . | p2N ♦ 2r | r2 ------------+-----+------+---- xp . . | p | 2prN | r ------------+-----+------+---- xp-4-o2 . ♦ p2 | 2p | r2N
xp-q-or xp-q-or (N → ∞) . . . . | p2N ♦ r r | r2 -----------------+-----+---------+---- xp . . . | p | prN * | r . . xp . | p | * prN | r -----------------+-----+---------+---- xp . xp . ♦ p2 | p p | r2N
© 2004-2025 | top of page |