Acronym ...
Name complex honeycomb xp-4-o2-4-or,
δp,r3
Vertex figure x2-4-or
Dual selfdual (as set)
Especially xp-4-o2-4-op (p=r)   xp-4-o2-4-o2 (r=2)   x2-4-o2-4-o2 (p=r=2)  
Confer
general polytopal classes:
complex polytopes  
External
links
wikipedia  

These complex tilings require the pair p,r to be from 2,2 (then resulting again in the real squat); 3,2; 3,3; 4,2; 4,4; 6,2; 6,3; 6,6; or one of their reversions.

The below also used value q follows the further requirement: 1/p + 2/q + 1/r = 1.


Incidence matrix according to Dynkin symbol

xp-4-o2-4-or   (N → ∞)

.    .    .  | p2N    2r |  r2
------------+-----+------+----
xp   .    .  |   p | 2prN |   r
------------+-----+------+----
xp-4-o2   .    p2 |   2p | r2N

xp-q-or   xp-q-or   (N → ∞)

.    .    .    .  | p2N    r   r |  r2
-----------------+-----+---------+----
xp   .    .    .  |   p | prN   * |   r
.    .    xp   .  |   p |   * prN |   r
-----------------+-----+---------+----
xp   .    xp   .    p2 |   p   p | r2N

© 2004-2025
top of page