Acronym | rin | ||||||||||||||||||||||||
Name |
rectified penteract, equatorial cross-section of nit-first brox | ||||||||||||||||||||||||
Field of sections |
© | ||||||||||||||||||||||||
Circumradius | sqrt(2) = 1.414214 | ||||||||||||||||||||||||
Inradius wrt. pen | sqrt(8/5) = 1.264911 | ||||||||||||||||||||||||
Inradius wrt. rit | 1/sqrt(2) = 0.707107 | ||||||||||||||||||||||||
Vertex figure |
© © | ||||||||||||||||||||||||
Lace city in approx. ASCII-art |
o3x4o o3o4q o3x4o -- o3o3x4o (rit) o3o4q o3o4q -- o3o3o4q (q-tes) o3x4o o3o4q o3x4o -- o3o3x4o (rit) | ||||||||||||||||||||||||
+---------- o3o3x4o (rit) / +------ o3o3o4q (q-tes) / / +- o3o3x4o (rit) / x3o3o o3o3o -- x3o3o3o (pen) x3x3o u3o3o x3o3o -- x3x3o3o (tip) o3x3x o3u3o x3x3o -- o3x3x3o (deca) o3o3x o3o3u o3x3x -- o3o3x3x (alt. tip) o3o3o o3o3x -- o3o3o3x (dual pen) | |||||||||||||||||||||||||
Coordinates | (1/sqrt(2), 1/sqrt(2), 1/sqrt(2), 1/sqrt(2), 0) & all permutations, all changes of sign | ||||||||||||||||||||||||
Volume | 119 sqrt(2)/30 = 5.609714 | ||||||||||||||||||||||||
Surface | (115+sqrt(5))/3 = 39.078689 | ||||||||||||||||||||||||
General of army | (is itself convex) | ||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| ||||||||||||||||||||||||
Dihedral angles
(at margins) | |||||||||||||||||||||||||
Face vector | 80, 320, 400, 200, 42 | ||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||
External links |
Incidence matrix according to Dynkin symbol
o3o3o3x4o . . . . . | 80 ♦ 8 | 12 4 | 8 6 | 2 4 ----------+----+-----+--------+--------+------ . . . x . | 2 | 320 | 3 1 | 3 3 | 1 3 ----------+----+-----+--------+--------+------ . . o3x . | 3 | 3 | 320 * | 2 1 | 1 2 . . . x4o | 4 | 4 | * 80 | 0 3 | 0 3 ----------+----+-----+--------+--------+------ . o3o3x . ♦ 4 | 6 | 4 0 | 160 * | 1 1 . . o3x4o ♦ 12 | 24 | 8 6 | * 40 | 0 2 ----------+----+-----+--------+--------+------ o3o3o3x . ♦ 5 | 10 | 10 0 | 5 0 | 32 * . o3o3x4o ♦ 32 | 96 | 64 24 | 16 8 | * 10
o3o3o3x4/3o . . . . . | 80 ♦ 8 | 12 4 | 8 6 | 2 4 ------------+----+-----+--------+--------+------ . . . x . | 2 | 320 | 3 1 | 3 3 | 1 3 ------------+----+-----+--------+--------+------ . . o3x . | 3 | 3 | 320 * | 2 1 | 1 2 . . . x4/3o | 4 | 4 | * 80 | 0 3 | 0 3 ------------+----+-----+--------+--------+------ . o3o3x . ♦ 4 | 6 | 4 0 | 160 * | 1 1 . . o3x4/3o ♦ 12 | 24 | 8 6 | * 40 | 0 2 ------------+----+-----+--------+--------+------ o3o3o3x . ♦ 5 | 10 | 10 0 | 5 0 | 32 * . o3o3x4/3o ♦ 32 | 96 | 64 24 | 16 8 | * 10
x3o3x *b3o3o . . . . . | 80 ♦ 4 4 | 6 4 6 | 6 4 4 | 4 1 1 -------------+----+---------+------------+----------+--------- x . . . . | 2 | 160 * | 3 1 0 | 3 3 0 | 3 1 0 . . x . . | 2 | * 160 | 0 1 3 | 3 0 3 | 3 0 1 -------------+----+---------+------------+----------+--------- x3o . . . | 3 | 3 0 | 160 * * | 1 2 0 | 2 1 0 x . x . . | 4 | 2 2 | * 80 * | 3 0 0 | 3 0 0 . o3x . . | 3 | 0 3 | * * 160 | 1 0 2 | 2 0 1 -------------+----+---------+------------+----------+--------- x3o3x . . ♦ 12 | 12 12 | 4 6 4 | 40 * * | 2 0 0 x3o . *b3o . ♦ 4 | 6 0 | 4 0 0 | * 80 * | 1 1 0 . o3x *b3o . ♦ 4 | 0 6 | 0 0 4 | * * 80 | 1 0 1 -------------+----+---------+------------+----------+--------- x3o3x *b3o . ♦ 32 | 48 48 | 32 24 32 | 8 8 8 | 10 * * x3o . *b3o3o ♦ 5 | 10 0 | 10 0 0 | 0 5 0 | * 16 * . o3x *b3o3o ♦ 5 | 0 10 | 0 0 10 | 0 0 5 | * * 16
o3o3o3x4s demi( . . . . . ) | 80 ♦ 4 4 | 6 4 6 | 4 6 4 | 1 4 1 ------------------+----+---------+------------+----------+--------- demi( . . . x . ) | 2 | 160 * | 3 1 0 | 3 3 0 | 1 3 0 sefa( . . . x4s ) | 2 | * 160 | 0 1 3 | 0 3 3 | 0 3 1 ------------------+----+---------+------------+----------+--------- demi( . . o3x . ) | 3 | 3 0 | 160 * * | 2 1 0 | 1 2 0 . . . x4s ♦ 4 | 2 2 | * 80 * | 0 3 0 | 0 3 0 sefa( . . o3x4s ) | 3 | 0 3 | * * 160 | 0 1 2 | 0 2 1 ------------------+----+---------+------------+----------+--------- demi( . o3o3x . ) ♦ 4 | 6 0 | 4 0 0 | 80 * * | 1 1 0 . . o3x4s ♦ 12 | 12 12 | 4 6 4 | * 40 * | 0 2 0 sefa( . o3o3x4s ) ♦ 4 | 0 6 | 0 0 4 | * * 80 | 0 1 1 ------------------+----+---------+------------+----------+--------- demi( o3o3o3x . ) ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 16 * * . o3o3x4s ♦ 32 | 48 48 | 32 24 32 | 8 8 8 | * 10 * sefa( o3o3o3x4s ) ♦ 5 | 0 10 | 0 0 10 | 0 0 5 | * * 16 starting figure: o3o3o3x4x
qo oo3oo3xo4oq&#zx → height = 0 (tegum sum of a q-height rittip and an equatorial q-tes) o. o.3o.3o.4o. | 64 * ♦ 6 2 | 6 3 1 6 | 2 3 3 6 | 1 3 2 .o .o3.o3.o4.o | * 16 ♦ 0 8 | 0 0 4 12 | 0 0 6 8 | 0 4 2 -------------------+-------+---------+---------------+--------------+------- .. .. .. x. .. | 2 0 | 192 * | 2 1 0 1 | 1 2 1 2 | 1 2 1 oo oo3oo3oo4oo&#x | 1 1 | * 128 | 0 0 1 3 | 0 0 3 3 | 0 3 1 -------------------+-------+---------+---------------+--------------+------- .. .. o.3x. .. | 3 0 | 3 0 | 128 * * * | 1 1 0 1 | 1 1 1 .. .. .. x.4o. | 4 0 | 4 0 | * 48 * * | 0 2 1 0 | 1 2 0 qo .. .. .. oq&#zx | 2 2 | 0 4 | * * 32 * | 0 0 3 0 | 0 3 0 .. .. .. xo ..&#x | 2 1 | 1 2 | * * * 192 | 0 0 1 2 | 0 2 1 -------------------+-------+---------+---------------+--------------+------- .. o.3o.3x. .. ♦ 4 0 | 6 0 | 4 0 0 0 | 32 * * * | 1 0 1 .. .. o.3x.4o. ♦ 12 0 | 24 0 | 8 6 0 0 | * 16 * * | 1 1 0 qo .. .. xo4oq&#zx ♦ 8 4 | 8 16 | 0 2 4 8 | * * 24 * | 0 2 0 .. .. oo3xo ..&#x ♦ 3 1 | 3 3 | 1 0 0 3 | * * * 128 | 0 1 1 -------------------+-------+---------+---------------+--------------+------- .. o.3o.3x.4o. ♦ 32 0 | 96 0 | 64 24 0 0 | 16 8 0 0 | 2 * * qo .. oo3xo4oq&#zx ♦ 24 8 | 48 48 | 16 12 12 48 | 0 2 6 16 | * 8 * .. oo3oo3xo ..&#x ♦ 4 1 | 6 4 | 4 0 0 6 | 1 0 0 4 | * * 32
ooo3ooo3xox4oqo&#xt → both heights = 1/sqrt(2) = 0.707107 (rit || pseudo q-tes || rit) o..3o..3o..4o.. | 32 * * ♦ 6 2 0 0 | 6 3 6 1 0 0 0 | 2 3 6 3 0 0 0 | 1 2 3 0 0 .o.3.o.3.o.4.o. | * 16 * ♦ 0 4 4 0 | 0 0 6 4 6 0 0 | 0 0 4 6 4 0 0 | 0 1 4 1 0 ..o3..o3..o4..o | * * 32 ♦ 0 0 2 6 | 0 0 0 1 6 6 3 | 0 0 0 3 6 2 3 | 0 0 3 2 1 --------------------+----------+-------------+----------------------+--------------------+------------ ... ... x.. ... | 2 0 0 | 96 * * * | 2 1 1 0 0 0 0 | 1 2 2 1 0 0 0 | 1 1 2 0 0 oo.3oo.3oo.4oo.&#x | 1 1 0 | * 64 * * | 0 0 3 1 0 0 0 | 0 0 3 3 0 0 0 | 0 1 3 0 0 .oo3.oo3.oo4.oo&#x | 0 1 1 | * * 64 * | 0 0 0 1 3 0 0 | 0 0 0 3 3 0 0 | 0 0 3 1 0 ... ... ..x ... | 0 0 2 | * * * 96 | 0 0 0 0 1 2 1 | 0 0 0 1 2 1 2 | 0 0 2 1 1 --------------------+----------+-------------+----------------------+--------------------+------------ ... o..3x.. ... | 3 0 0 | 3 0 0 0 | 64 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 ... ... x..4o.. | 4 0 0 | 4 0 0 0 | * 24 * * * * * | 0 2 0 1 0 0 0 | 1 0 2 0 0 ... ... xo. ...&#x | 2 1 0 | 1 2 0 0 | * * 96 * * * * | 0 0 2 1 0 0 0 | 0 1 2 0 0 ... ... ... oqo&#x | 1 2 1 | 0 2 2 0 | * * * 32 * * * | 0 0 0 3 0 0 0 | 0 0 3 0 0 ... ... .ox ...&#x | 0 1 2 | 0 0 2 1 | * * * * 96 * * | 0 0 0 1 2 0 0 | 0 0 2 1 0 ... ..o3..x ... | 0 0 3 | 0 0 0 3 | * * * * * 64 * | 0 0 0 0 1 1 1 | 0 0 1 1 1 ... ... ..x4..o | 0 0 4 | 0 0 0 4 | * * * * * * 24 | 0 0 0 1 0 0 2 | 0 0 2 0 1 --------------------+----------+-------------+----------------------+--------------------+------------ o..3o..3x.. ... ♦ 4 0 0 | 6 0 0 0 | 4 0 0 0 0 0 0 | 16 * * * * * * | 1 1 0 0 0 ... o..3x..4o.. ♦ 12 0 0 | 24 0 0 0 | 8 6 0 0 0 0 0 | * 8 * * * * * | 1 0 1 0 0 ... oo.3xo. ...&#x ♦ 3 1 0 | 3 3 0 0 | 1 0 3 0 0 0 0 | * * 64 * * * * | 0 1 1 0 0 ... ... xox4oqo&#xt ♦ 4 4 4 | 4 8 8 4 | 0 1 4 4 4 0 1 | * * * 24 * * * | 0 0 2 0 0 ... .oo3.ox ...&#x ♦ 0 1 3 | 0 0 3 3 | 0 0 0 0 3 1 0 | * * * * 64 * * | 0 0 1 1 0 ..o3..o3..x ... ♦ 0 0 4 | 0 0 0 6 | 0 0 0 0 0 4 0 | * * * * * 16 * | 0 0 0 1 1 ... ..o3..x4..o ♦ 0 0 12 | 0 0 0 24 | 0 0 0 0 0 8 6 | * * * * * * 8 | 0 0 1 0 1 --------------------+----------+-------------+----------------------+--------------------+------------ o..3o..3x..4o.. ♦ 32 0 0 | 96 0 0 0 | 64 24 0 0 0 0 0 | 16 8 0 0 0 0 0 | 1 * * * * oo.3oo.3xo. ...&#x ♦ 4 1 0 | 6 4 0 0 | 4 0 6 0 0 0 0 | 1 0 4 0 0 0 0 | * 16 * * * ... ooo3xox4oqo&#xt ♦ 12 8 12 | 24 24 24 24 | 8 6 24 12 24 8 6 | 0 1 8 6 8 0 1 | * * 8 * * .oo3.oo3.ox ...&#x ♦ 0 1 4 | 0 0 4 6 | 0 0 0 0 6 4 0 | 0 0 0 0 4 1 0 | * * * 16 * ..o3..o3..x4..o ♦ 0 0 32 | 0 0 0 96 | 0 0 0 0 0 64 24 | 0 0 0 0 0 16 8 | * * * * 1
xxooo3oxxoo3ooxxo3oooxx&#xt → all heights = sqrt(2/5) = 0.632456 (pen || pseudo tip || pseudo deca || pseudo inv tip || dual pen) o....3o....3o....3o.... & | 10 * * ♦ 4 4 0 0 0 0 | 6 4 6 0 0 0 0 0 | 4 6 4 0 0 0 0 | 1 1 4 0 .o...3.o...3.o...3.o... & | * 40 * ♦ 0 1 1 3 3 0 | 0 1 3 3 3 3 3 0 | 0 3 3 1 3 3 1 | 0 1 4 1 ..o..3..o..3..o..3..o.. | * * 30 ♦ 0 0 0 0 4 4 | 0 0 0 0 2 4 8 2 | 0 2 0 0 4 4 4 | 0 0 4 2 ------------------------------+----------+--------------------+--------------------------+----------------------+----------- x.... ..... ..... ..... & | 2 0 0 | 20 * * * * * | 3 1 0 0 0 0 0 0 | 3 3 0 0 0 0 0 | 1 0 3 0 oo...3oo...3oo...3oo...&#x & | 1 1 0 | * 40 * * * * | 0 1 3 0 0 0 0 0 | 0 3 3 0 0 0 0 | 0 1 3 0 .x... ..... ..... ..... & | 0 2 0 | * * 20 * * * | 0 1 0 0 3 0 0 0 | 0 3 0 0 3 0 0 | 0 0 3 1 ..... .x... ..... ..... & | 0 2 0 | * * * 60 * * | 0 0 1 2 0 1 0 0 | 0 1 2 1 0 2 0 | 0 1 3 0 .oo..3.oo..3.oo..3.oo..&#x & | 0 1 1 | * * * * 120 * | 0 0 0 0 1 1 2 0 | 0 1 0 0 2 2 1 | 0 0 3 1 ..... ..x.. ..... ..... & | 0 0 2 | * * * * * 60 | 0 0 0 0 0 1 2 1 | 0 1 0 0 1 2 2 | 0 0 3 1 ------------------------------+----------+--------------------+--------------------------+----------------------+----------- x....3o.... ..... ..... & | 3 0 0 | 3 0 0 0 0 0 | 20 * * * * * * * | 2 1 0 0 0 0 0 | 1 0 2 0 xx... ..... ..... .....&#x & | 2 2 0 | 1 2 1 0 0 0 | * 20 * * * * * * | 0 3 0 0 0 0 0 | 0 0 3 0 ..... ox... ..... .....&#x & | 1 2 0 | 0 2 0 1 0 0 | * * 60 * * * * * | 0 1 2 0 0 0 0 | 0 1 2 0 ..... .x...3.o... ..... & | 0 3 0 | 0 0 0 3 0 0 | * * * 40 * * * * | 0 0 1 1 0 1 0 | 0 1 2 0 .xo.. ..... ..... .....&#x & | 0 2 1 | 0 0 1 0 2 0 | * * * * 60 * * * | 0 1 0 0 2 0 0 | 0 0 2 1 ..... .xx.. ..... .....&#x & | 0 2 2 | 0 0 0 1 2 1 | * * * * * 60 * * | 0 1 0 0 0 2 0 | 0 0 3 0 ..... ..... .ox.. .....&#x & | 0 1 2 | 0 0 0 0 2 1 | * * * * * * 120 * | 0 0 0 0 1 1 1 | 0 0 2 1 ..o..3..x.. ..... ..... & | 0 0 3 | 0 0 0 0 0 3 | * * * * * * * 20 | 0 1 0 0 0 0 2 | 0 0 2 1 ------------------------------+----------+--------------------+--------------------------+----------------------+----------- x....3o....3o.... ..... & ♦ 4 0 0 | 6 0 0 0 0 0 | 4 0 0 0 0 0 0 0 | 10 * * * * * * | 1 0 1 0 xxo..3oxx.. ..... .....&#xt & ♦ 3 6 3 | 3 6 3 3 6 3 | 1 3 3 0 3 3 0 1 | * 20 * * * * * | 0 0 2 0 ..... ox...3oo... .....&#x & ♦ 1 3 0 | 0 3 0 3 0 0 | 0 0 3 1 0 0 0 0 | * * 40 * * * * | 0 1 1 0 ..... .x...3.o...3.o... & ♦ 0 4 0 | 0 0 0 6 0 0 | 0 0 0 4 0 0 0 0 | * * * 10 * * * | 0 1 1 0 .xo.. ..... .ox.. .....&#x & ♦ 0 2 2 | 0 0 1 0 4 1 | 0 0 0 0 2 0 2 0 | * * * * 60 * * | 0 0 1 1 ..... .xxo.3.oxx. .....&#xt ♦ 0 6 6 | 0 0 0 6 12 6 | 0 0 0 2 0 6 6 0 | * * * * * 20 * | 0 0 2 0 ..... ..... .ox..3.oo..&#x & ♦ 0 1 3 | 0 0 0 0 3 3 | 0 0 0 0 0 0 3 1 | * * * * * * 40 | 0 0 1 1 ------------------------------+----------+--------------------+--------------------------+----------------------+----------- x....3o....3o....3o.... & ♦ 5 0 0 | 10 0 0 0 0 0 | 10 0 0 0 0 0 0 0 | 5 0 0 0 0 0 0 | 2 * * * ..... ox...3oo...3oo...&#x & ♦ 1 4 0 | 0 4 0 6 0 0 | 0 0 6 4 0 0 0 0 | 0 0 4 1 0 0 0 | * 10 * * xxoo.3oxxo.3ooxx. .....&#xt & ♦ 4 16 12 | 6 12 6 18 36 18 | 4 6 12 8 12 18 24 4 | 1 4 4 1 6 4 4 | * * 10 * .xo.. ..... .ox..3.oo..&#x & ♦ 0 2 3 | 0 0 1 0 6 3 | 0 0 0 0 3 0 6 1 | 0 0 0 0 3 0 2 | * * * 20
© 2004-2025 | top of page |