Acronym ...
Name hex+8oct (?)
Circumradius 1/sqrt(2) = 0.707107
Coordinates
  • as orthoplex (tetracross):   (1/sqrt(2), 0, 0, 0)   & all permutations, all changes of sign
  • as hemitesseract:   (1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8))   & all permutations, all even changes of sign
  • as "the other" (mirrored) hemitesseract:   (1/sqrt(8), 1/sqrt(8), 1/sqrt(8), -1/sqrt(8))   & all permutations, all even changes of sign
  • (the compound of those 3 such oriented hexadecachora is sico, vertex inscribed in the dual ico of the intersection kernel)
General of army hex
Colonel of regiment hex
Confer
non-Grünbaumian master:
hex  
Grünbaumian relatives:
2hex+8oct  
general polytopal classes:
Wythoffian polychora  

Looks like a compound of an hexadecachoron (hex) with 8 pairwise coincident diametral octahedra (oct).


Incidence matrix according to Dynkin symbol

x3o3o4o4/3*b

. . . .      | 8   6 | 24 |  8 6
-------------+---+----+----+-----
x . . .      | 2 | 24 |  8 |  4 4
-------------+---+----+----+-----
x3o . .      | 3 |  3 | 64 |  1 1
-------------+---+----+----+-----
x3o3o .       4 |  6 |  4 | 16 *
x3o . o4/3*b  6 | 12 |  8 |  * 8

x3o3o4/3o4*b

. . .   .    | 8   6 | 24 |  8 6
-------------+---+----+----+-----
x . .   .    | 2 | 24 |  8 |  4 4
-------------+---+----+----+-----
x3o .   .    | 3 |  3 | 64 |  1 1
-------------+---+----+----+-----
x3o3o   .     4 |  6 |  4 | 16 *
x3o .   o4*b  6 | 12 |  8 |  * 8

x3o3/2o4o4*b

. .   . .    | 8   6 | 24 |  8 6
-------------+---+----+----+-----
x .   . .    | 2 | 24 |  8 |  4 4
-------------+---+----+----+-----
x3o   . .    | 3 |  3 | 64 |  1 1
-------------+---+----+----+-----
x3o3/2o .     4 |  6 |  4 | 16 *
x3o   . o4*b  6 | 12 |  8 |  * 8

x3o3/2o4/3o4/3*b

. .   .   .      | 8   6 | 24 |  8 6
-----------------+---+----+----+-----
x .   .   .      | 2 | 24 |  8 |  4 4
-----------------+---+----+----+-----
x3o   .   .      | 3 |  3 | 64 |  1 1
-----------------+---+----+----+-----
x3o3/2o   .       4 |  6 |  4 | 16 *
x3o   .   o4/3*b  6 | 12 |  8 |  * 8

x3/2o3o4o4/3*b

.   . . .      | 8   6 | 24 |  8 6
---------------+---+----+----+-----
x   . . .      | 2 | 24 |  8 |  4 4
---------------+---+----+----+-----
x3/2o . .      | 3 |  3 | 64 |  1 1
---------------+---+----+----+-----
x3/2o3o .       4 |  6 |  4 | 16 *
x3/2o . o4/3*b  6 | 12 |  8 |  * 8

x3/2o3o4/3o4*b

.   . .   .    | 8   6 | 24 |  8 6
---------------+---+----+----+-----
x   . .   .    | 2 | 24 |  8 |  4 4
---------------+---+----+----+-----
x3/2o .   .    | 3 |  3 | 64 |  1 1
---------------+---+----+----+-----
x3/2o3o   .     4 |  6 |  4 | 16 *
x3/2o .   o4*b  6 | 12 |  8 |  * 8

x3/2o3/2o4o4*b

.   .   . .    | 8   6 | 24 |  8 6
---------------+---+----+----+-----
x   .   . .    | 2 | 24 |  8 |  4 4
---------------+---+----+----+-----
x3/2o   . .    | 3 |  3 | 64 |  1 1
---------------+---+----+----+-----
x3/2o3/2o .     4 |  6 |  4 | 16 *
x3/2o   . o4*b  6 | 12 |  8 |  * 8

x3/2o3/2o4/3o4/3*b

.   .   .   .      | 8   6 | 24 |  8 6
-------------------+---+----+----+-----
x   .   .   .      | 2 | 24 |  8 |  4 4
-------------------+---+----+----+-----
x3/2o   .   .      | 3 |  3 | 64 |  1 1
-------------------+---+----+----+-----
x3/2o3/2o   .       4 |  6 |  4 | 16 *
x3/2o   .   o4/3*b  6 | 12 |  8 |  * 8

© 2004-2025
top of page