Acronym | pexrit |
Name | partially (mono-)expanded rit |
Lace city in approx. ASCII-art |
x4o o4q o4q x4o o4q o4q x4o o4q o4q x4o |
Face vector | 40, 104, 88, 24 |
Confer |
The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.
Incidence matrix according to Dynkin symbol
oooo3xoox4oqqo&#xt → outer heights = 1/sqrt(2) = 0.707107 inner height = 1 (co || pseudo q-cube || pseudo q-cube || co) o...3o...4o... | 12 * * * ♦ 4 2 0 0 0 | 2 2 4 1 0 0 0 | 1 2 2 0 0 .o..3.o..4.o.. | * 8 * * | 0 3 1 0 0 | 0 0 3 3 0 0 0 | 0 1 3 0 0 ..o.3..o.4..o. | * * 8 * | 0 0 1 3 0 | 0 0 0 3 3 0 0 | 0 0 3 1 0 ...o3...o4...o | * * * 12 ♦ 0 0 0 2 4 | 0 0 0 1 4 2 2 | 0 0 2 2 1 -------------------+-----------+---------------+------------------+---------- .... x... .... | 2 0 0 0 | 24 * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 oo..3oo..4oo..&#x | 1 1 0 0 | * 24 * * * | 0 0 2 1 0 0 0 | 0 1 2 0 0 .oo.3.oo.4.oo.&#x | 0 1 1 0 | * * 8 * * | 0 0 0 3 0 0 0 | 0 0 3 0 0 ..oo3..oo4..oo&#x | 0 0 1 1 | * * * 24 * | 0 0 0 1 2 0 0 | 0 0 2 1 0 .... ...x .... | 0 0 0 2 | * * * * 24 | 0 0 0 0 1 1 1 | 0 0 1 1 1 -------------------+-----------+---------------+------------------+---------- o...3x... .... | 3 0 0 0 | 3 0 0 0 0 | 8 * * * * * * | 1 1 0 0 0 .... x...4o... | 4 0 0 0 | 4 0 0 0 0 | * 6 * * * * * | 1 0 1 0 0 .... xo.. ....&#x | 2 1 0 0 | 1 2 0 0 0 | * * 24 * * * * | 0 1 1 0 0 .... .... oqqo&#xt | 1 2 2 1 | 0 2 2 2 0 | * * * 12 * * * | 0 0 2 0 0 {(h,H,H)2} .... ..ox ....&#x | 0 0 1 2 | 0 0 0 2 1 | * * * * 24 * * | 0 0 1 1 0 ...o3...x .... | 0 0 0 3 | 0 0 0 0 3 | * * * * * 8 * | 0 0 0 1 1 .... ...x4...o | 0 0 0 4 | 0 0 0 0 4 | * * * * * * 6 | 0 0 1 0 1 -------------------+-----------+---------------+------------------+---------- o...3x...4o... ♦ 12 0 0 0 | 24 0 0 0 0 | 8 6 0 0 0 0 0 | 1 * * * * oo..3xo.. ....&#x ♦ 3 1 0 0 | 3 3 0 0 0 | 1 0 3 0 0 0 0 | * 8 * * * .... xoox4oqqo&#xt ♦ 4 4 4 4 | 4 8 4 8 4 | 0 1 4 4 4 0 1 | * * 6 * * ..oo3..ox ....&#x ♦ 0 0 1 3 | 0 0 0 3 3 | 0 0 0 0 3 1 0 | * * * 8 * ...o3...x4...o ♦ 0 0 0 12 | 0 0 0 0 24 | 0 0 0 0 0 8 6 | * * * * 1
or o...3o...4o... & | 24 * ♦ 4 2 0 | 2 2 4 1 | 1 2 2 .o..3.o..4.o.. & | * 16 | 0 3 1 | 0 0 3 3 | 0 1 3 ---------------------+-------+---------+-------------+------- .... x... .... & | 2 0 | 48 * * | 1 1 1 0 | 1 1 1 oo..3oo..4oo..&#x & | 1 1 | * 48 * | 0 0 2 1 | 0 1 2 .oo.3.oo.4.oo.&#x | 0 2 | * * 8 | 0 0 0 3 | 0 0 3 ---------------------+-------+---------+-------------+------- o...3x... .... & | 3 0 | 3 0 0 | 16 * * * | 1 1 0 .... x...4o... & | 4 0 | 4 0 0 | * 12 * * | 1 0 1 .... xo.. ....&#x & | 2 1 | 1 2 0 | * * 48 * | 0 1 1 .... .... oqqo&#xt | 2 4 | 0 4 2 | * * * 12 | 0 0 2 {(h,H,H)2} ---------------------+-------+---------+-------------+------- o...3x...4o... & ♦ 12 0 | 24 0 0 | 8 6 0 0 | 2 * * oo..3xo.. ....&#x & ♦ 3 1 | 3 3 0 | 1 0 3 0 | * 16 * .... xoox4oqqo&#xt ♦ 8 8 | 8 16 4 | 0 2 8 4 | * * 6
oo3xo4oq wx&#zx → height = 0 (tegum sum of (x,w)-cope and (q,x)-cube-prism (=tes)) o.3o.4o. o. | 24 * ♦ 4 2 0 | 2 2 4 1 | 1 2 2 .o3.o4.o .o | * 16 | 0 3 1 | 0 0 3 3 | 0 1 3 ----------------+-------+---------+-------------+------- .. x. .. .. | 2 0 | 48 * * | 1 1 1 0 | 1 1 1 oo3oo4oo oo&#x | 1 1 | * 48 * | 0 0 2 1 | 0 1 2 .. .. .. .x | 0 2 | * * 8 | 0 0 0 3 | 0 0 3 ----------------+-------+---------+-------------+------- o.3x. .. .. | 3 0 | 3 0 0 | 16 * * * | 1 1 0 .. x.4o. .. | 4 0 | 4 0 0 | * 12 * * | 1 0 1 .. xo .. ..&#x | 2 1 | 1 2 0 | * * 48 * | 0 1 1 .. .. oq wx&#zx | 2 4 | 0 4 2 | * * * 12 | 0 0 2 {(h,H,H)2} ----------------+-------+---------+-------------+------- o.3x.4o. .. ♦ 12 0 | 24 0 0 | 8 6 0 0 | 2 * * oo3xo .. ..&#x ♦ 3 1 | 3 3 0 | 1 0 3 0 | * 16 * .. xo4oq wx&#zx ♦ 8 8 | 8 16 4 | 0 2 8 4 | * * 6
© 2004-2025 | top of page |