| Acronym | pexrit |
| Name | partially (mono-)expanded rit |
|
Lace city in approx. ASCII-art |
x4o o4q o4q x4o
o4q o4q
x4o o4q o4q x4o
|
| Face vector | 40, 104, 88, 24 |
| Confer |
The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.
Incidence matrix according to Dynkin symbol
oooo3xoox4oqqo&#xt → outer heights = 1/sqrt(2) = 0.707107
inner height = 1
(co || pseudo q-cube || pseudo q-cube || co)
o...3o...4o... | 12 * * * ♦ 4 2 0 0 0 | 2 2 4 1 0 0 0 | 1 2 2 0 0
.o..3.o..4.o.. | * 8 * * | 0 3 1 0 0 | 0 0 3 3 0 0 0 | 0 1 3 0 0
..o.3..o.4..o. | * * 8 * | 0 0 1 3 0 | 0 0 0 3 3 0 0 | 0 0 3 1 0
...o3...o4...o | * * * 12 ♦ 0 0 0 2 4 | 0 0 0 1 4 2 2 | 0 0 2 2 1
-------------------+-----------+---------------+------------------+----------
.... x... .... | 2 0 0 0 | 24 * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 0
oo..3oo..4oo..&#x | 1 1 0 0 | * 24 * * * | 0 0 2 1 0 0 0 | 0 1 2 0 0
.oo.3.oo.4.oo.&#x | 0 1 1 0 | * * 8 * * | 0 0 0 3 0 0 0 | 0 0 3 0 0
..oo3..oo4..oo&#x | 0 0 1 1 | * * * 24 * | 0 0 0 1 2 0 0 | 0 0 2 1 0
.... ...x .... | 0 0 0 2 | * * * * 24 | 0 0 0 0 1 1 1 | 0 0 1 1 1
-------------------+-----------+---------------+------------------+----------
o...3x... .... | 3 0 0 0 | 3 0 0 0 0 | 8 * * * * * * | 1 1 0 0 0
.... x...4o... | 4 0 0 0 | 4 0 0 0 0 | * 6 * * * * * | 1 0 1 0 0
.... xo.. ....&#x | 2 1 0 0 | 1 2 0 0 0 | * * 24 * * * * | 0 1 1 0 0
.... .... oqqo&#xt | 1 2 2 1 | 0 2 2 2 0 | * * * 12 * * * | 0 0 2 0 0 {(h,H,H)2}
.... ..ox ....&#x | 0 0 1 2 | 0 0 0 2 1 | * * * * 24 * * | 0 0 1 1 0
...o3...x .... | 0 0 0 3 | 0 0 0 0 3 | * * * * * 8 * | 0 0 0 1 1
.... ...x4...o | 0 0 0 4 | 0 0 0 0 4 | * * * * * * 6 | 0 0 1 0 1
-------------------+-----------+---------------+------------------+----------
o...3x...4o... ♦ 12 0 0 0 | 24 0 0 0 0 | 8 6 0 0 0 0 0 | 1 * * * *
oo..3xo.. ....&#x ♦ 3 1 0 0 | 3 3 0 0 0 | 1 0 3 0 0 0 0 | * 8 * * *
.... xoox4oqqo&#xt ♦ 4 4 4 4 | 4 8 4 8 4 | 0 1 4 4 4 0 1 | * * 6 * *
..oo3..ox ....&#x ♦ 0 0 1 3 | 0 0 0 3 3 | 0 0 0 0 3 1 0 | * * * 8 *
...o3...x4...o ♦ 0 0 0 12 | 0 0 0 0 24 | 0 0 0 0 0 8 6 | * * * * 1
or
o...3o...4o... & | 24 * ♦ 4 2 0 | 2 2 4 1 | 1 2 2
.o..3.o..4.o.. & | * 16 | 0 3 1 | 0 0 3 3 | 0 1 3
---------------------+-------+---------+-------------+-------
.... x... .... & | 2 0 | 48 * * | 1 1 1 0 | 1 1 1
oo..3oo..4oo..&#x & | 1 1 | * 48 * | 0 0 2 1 | 0 1 2
.oo.3.oo.4.oo.&#x | 0 2 | * * 8 | 0 0 0 3 | 0 0 3
---------------------+-------+---------+-------------+-------
o...3x... .... & | 3 0 | 3 0 0 | 16 * * * | 1 1 0
.... x...4o... & | 4 0 | 4 0 0 | * 12 * * | 1 0 1
.... xo.. ....&#x & | 2 1 | 1 2 0 | * * 48 * | 0 1 1
.... .... oqqo&#xt | 2 4 | 0 4 2 | * * * 12 | 0 0 2 {(h,H,H)2}
---------------------+-------+---------+-------------+-------
o...3x...4o... & ♦ 12 0 | 24 0 0 | 8 6 0 0 | 2 * *
oo..3xo.. ....&#x & ♦ 3 1 | 3 3 0 | 1 0 3 0 | * 16 *
.... xoox4oqqo&#xt ♦ 8 8 | 8 16 4 | 0 2 8 4 | * * 6
oo3xo4oq wx&#zx → height = 0
(tegum sum of (x,w)-cope and (q,x)-cube-prism (=tes))
o.3o.4o. o. | 24 * ♦ 4 2 0 | 2 2 4 1 | 1 2 2
.o3.o4.o .o | * 16 | 0 3 1 | 0 0 3 3 | 0 1 3
----------------+-------+---------+-------------+-------
.. x. .. .. | 2 0 | 48 * * | 1 1 1 0 | 1 1 1
oo3oo4oo oo&#x | 1 1 | * 48 * | 0 0 2 1 | 0 1 2
.. .. .. .x | 0 2 | * * 8 | 0 0 0 3 | 0 0 3
----------------+-------+---------+-------------+-------
o.3x. .. .. | 3 0 | 3 0 0 | 16 * * * | 1 1 0
.. x.4o. .. | 4 0 | 4 0 0 | * 12 * * | 1 0 1
.. xo .. ..&#x | 2 1 | 1 2 0 | * * 48 * | 0 1 1
.. .. oq wx&#zx | 2 4 | 0 4 2 | * * * 12 | 0 0 2 {(h,H,H)2}
----------------+-------+---------+-------------+-------
o.3x.4o. .. ♦ 12 0 | 24 0 0 | 8 6 0 0 | 2 * *
oo3xo .. ..&#x ♦ 3 1 | 3 3 0 | 1 0 3 0 | * 16 *
.. xo4oq wx&#zx ♦ 8 8 | 8 16 4 | 0 2 8 4 | * * 6
© 2004-2025 | top of page |