Acronym | ... |
Name | 2guhsa (?) |
Circumradius | 1/sqrt(2) = 0.707107 |
Coordinates | (1/sqrt(2), 0, 0, 0, 0, 0, 0) & all permutations, all changes of sign |
General of army | zee |
Colonel of regiment | zee |
Confer |
|
This Grünbaumian polypeton indeed has all higher dimensional elements in coincident pairs, while the vertices, edges, and triangles are identified; thus the vertex figure becomes a Grünbaumian double-cover of thox, the edge figure becomes a Grünbaumian double-cover of hehad, the face figure becomes a Grünbaumian double-cover of tho, and the cell figure becomes a Grünbaumian double-cover of thah.
Incidence matrix according to Dynkin symbol
x3o3o3o3o3o3o3/2*d . . . . . . . | 14 ♦ 12 | 60 | 160 | 480 | 192 192 | 32 12 32 -------------------+----+----+-----+-----+------+---------+--------- x . . . . . . | 2 | 84 ♦ 10 | 40 | 160 | 80 80 | 16 10 16 -------------------+----+----+-----+-----+------+---------+--------- x3o . . . . . | 3 | 3 | 280 ♦ 8 | 48 | 32 32 | 8 8 8 -------------------+----+----+-----+-----+------+---------+--------- x3o3o . . . . ♦ 4 | 6 | 4 | 560 ♦ 12 | 12 12 | 4 6 4 -------------------+----+----+-----+-----+------+---------+--------- x3o3o3o . . . ♦ 5 | 10 | 10 | 5 | 1344 | 2 2 | 1 2 1 -------------------+----+----+-----+-----+------+---------+--------- x3o3o3o3o . . ♦ 6 | 15 | 20 | 15 | 6 | 448 * | 1 1 0 x3o3o3o . . o3/2*d ♦ 6 | 15 | 20 | 15 | 6 | * 448 | 0 1 1 -------------------+----+----+-----+-----+------+---------+--------- x3o3o3o3o3o . ♦ 7 | 21 | 35 | 35 | 21 | 7 0 | 64 * * x3o3o3o3o . o3/2*d ♦ 12 | 60 | 160 | 240 | 192 | 32 32 | * 14 * x3o3o3o . o3o3/2*d ♦ 7 | 21 | 35 | 35 | 21 | 0 7 | * * 64
x3o3o3o3o3o3/2o3*d . . . . . . . | 14 ♦ 12 | 60 | 160 | 480 | 192 192 | 32 12 32 -------------------+----+----+-----+-----+------+---------+--------- x . . . . . . | 2 | 84 ♦ 10 | 40 | 160 | 80 80 | 16 10 16 -------------------+----+----+-----+-----+------+---------+--------- x3o . . . . . | 3 | 3 | 280 ♦ 8 | 48 | 32 32 | 8 8 8 -------------------+----+----+-----+-----+------+---------+--------- x3o3o . . . . ♦ 4 | 6 | 4 | 560 ♦ 12 | 12 12 | 4 6 4 -------------------+----+----+-----+-----+------+---------+--------- x3o3o3o . . . ♦ 5 | 10 | 10 | 5 | 1344 | 2 2 | 1 2 1 -------------------+----+----+-----+-----+------+---------+--------- x3o3o3o3o . . ♦ 6 | 15 | 20 | 15 | 6 | 448 * | 1 1 0 x3o3o3o . . o3*d ♦ 6 | 15 | 20 | 15 | 6 | * 448 | 0 1 1 -------------------+----+----+-----+-----+------+---------+--------- x3o3o3o3o3o . ♦ 7 | 21 | 35 | 35 | 21 | 7 0 | 64 * * x3o3o3o3o . o3*d ♦ 12 | 60 | 160 | 240 | 192 | 32 32 | * 14 * x3o3o3o . o3/2o3*d ♦ 7 | 21 | 35 | 35 | 21 | 0 7 | * * 64
© 2004-2024 | top of page |