Acronym ... Name 2guhsa (?) Circumradius 1/sqrt(2) = 0.707107 Coordinates (1/sqrt(2), 0, 0, 0, 0, 0, 0)   & all permutations, all changes of sign General of army zee Colonel of regiment zee Confer non-Grünbaumian master: guhsa

This Grünbaumian polypeton indeed has all higher dimensional elements in coincident pairs, while the vertices, edges, and triangles are identified; thus the vertex figure becomes a Grünbaumian double-cover of thox, the edge figure becomes a Grünbaumian double-cover of hehad, the face figure becomes a Grünbaumian double-cover of tho, and the cell figure becomes a Grünbaumian double-cover of thah.

Incidence matrix according to Dynkin symbol

```x3o3o3o3o3o3o3/2*d

. . . . . . .      | 14 ♦ 12 |  60 | 160 |  480 | 192 192 | 32 12 32
-------------------+----+----+-----+-----+------+---------+---------
x . . . . . .      |  2 | 84 ♦  10 |  40 |  160 |  80  80 | 16 10 16
-------------------+----+----+-----+-----+------+---------+---------
x3o . . . . .      |  3 |  3 | 280 ♦   8 |   48 |  32  32 |  8  8  8
-------------------+----+----+-----+-----+------+---------+---------
x3o3o . . . .      ♦  4 |  6 |   4 | 560 ♦   12 |  12  12 |  4  6  4
-------------------+----+----+-----+-----+------+---------+---------
x3o3o3o . . .      ♦  5 | 10 |  10 |   5 | 1344 |   2   2 |  1  2  1
-------------------+----+----+-----+-----+------+---------+---------
x3o3o3o3o . .      ♦  6 | 15 |  20 |  15 |    6 | 448   * |  1  1  0
x3o3o3o . . o3/2*d ♦  6 | 15 |  20 |  15 |    6 |   * 448 |  0  1  1
-------------------+----+----+-----+-----+------+---------+---------
x3o3o3o3o3o .      ♦  7 | 21 |  35 |  35 |   21 |   7   0 | 64  *  *
x3o3o3o3o . o3/2*d ♦ 12 | 60 | 160 | 240 |  192 |  32  32 |  * 14  *
x3o3o3o . o3o3/2*d ♦  7 | 21 |  35 |  35 |   21 |   0   7 |  *  * 64
```

```x3o3o3o3o3o3/2o3*d

. . . . . .   .    | 14 ♦ 12 |  60 | 160 |  480 | 192 192 | 32 12 32
-------------------+----+----+-----+-----+------+---------+---------
x . . . . .   .    |  2 | 84 ♦  10 |  40 |  160 |  80  80 | 16 10 16
-------------------+----+----+-----+-----+------+---------+---------
x3o . . . .   .    |  3 |  3 | 280 ♦   8 |   48 |  32  32 |  8  8  8
-------------------+----+----+-----+-----+------+---------+---------
x3o3o . . .   .    ♦  4 |  6 |   4 | 560 ♦   12 |  12  12 |  4  6  4
-------------------+----+----+-----+-----+------+---------+---------
x3o3o3o . .   .    ♦  5 | 10 |  10 |   5 | 1344 |   2   2 |  1  2  1
-------------------+----+----+-----+-----+------+---------+---------
x3o3o3o3o .   .    ♦  6 | 15 |  20 |  15 |    6 | 448   * |  1  1  0
x3o3o3o . .   o3*d ♦  6 | 15 |  20 |  15 |    6 |   * 448 |  0  1  1
-------------------+----+----+-----+-----+------+---------+---------
x3o3o3o3o3o   .    ♦  7 | 21 |  35 |  35 |   21 |   7   0 | 64  *  *
x3o3o3o3o .   o3*d ♦ 12 | 60 | 160 | 240 |  192 |  32  32 |  * 14  *
x3o3o3o . o3/2o3*d ♦  7 | 21 |  35 |  35 |   21 |   0   7 |  *  * 64
```