Acronym | rich |
Name | rectified cubic honeycomb |
© © © | |
Vertex figure |
© |
Coordinates | (i/sqrt(2), j/sqrt(2), k/sqrt(2)) for integers i,j,k with i+j+k even, but i,j,k not all even themselves |
Confer |
|
External links |
Parallel dissections of this uniform honeycomb at its thats, i.e. cutting each co into a pair of tricues, allows for several (non-elementary) scaliform honeycombs.
Whereas parallel elongations at its squats, cutting all octs into pairs of squippies, leads (if recombining those with that introduced cube into esquidpies) to pexrich.
Incidence matrix according to Dynkin symbol
o4x3o4o (N → ∞) . . . . | 3N ♦ 8 | 4 8 | 4 2 --------+----+-----+-------+---- . x . . | 2 | 12N | 1 2 | 2 1 --------+----+-----+-------+---- o4x . . | 4 | 4 | 3N * | 2 0 . x3o . | 3 | 3 | * 8N | 1 1 --------+----+-----+-------+---- o4x3o . ♦ 12 | 24 | 6 8 | N * . x3o4o ♦ 6 | 12 | 0 8 | * N
o4x3o4/3o (N → ∞) . . . . | 3N ♦ 8 | 4 8 | 4 2 ----------+----+-----+-------+---- . x . . | 2 | 12N | 1 2 | 2 1 ----------+----+-----+-------+---- o4x . . | 4 | 4 | 3N * | 2 0 . x3o . | 3 | 3 | * 8N | 1 1 ----------+----+-----+-------+---- o4x3o . ♦ 12 | 24 | 6 8 | N * . x3o4/3o ♦ 6 | 12 | 0 8 | * N
o4o3x4/3o (N → ∞) . . . . | 3N ♦ 8 | 8 4 | 2 4 ----------+----+-----+-------+---- . . x . | 2 | 12N | 2 1 | 1 2 ----------+----+-----+-------+---- . o3x . | 3 | 3 | 8N * | 1 1 . . x4/3o | 4 | 4 | * 3N | 0 2 ----------+----+-----+-------+---- o4o3x . ♦ 6 | 12 | 8 0 | N * . o3x4/3o ♦ 12 | 24 | 8 6 | * N
o4/3x3o4/3o (N → ∞) . . . . | 3N ♦ 8 | 4 8 | 4 2 ------------+----+-----+-------+---- . x . . | 2 | 12N | 1 2 | 2 1 ------------+----+-----+-------+---- o4/3x . . | 4 | 4 | 3N * | 2 0 . x3o . | 3 | 3 | * 8N | 1 1 ------------+----+-----+-------+---- o4/3x3o . ♦ 12 | 24 | 6 8 | N * . x3o4/3o ♦ 6 | 12 | 0 8 | * N
o3x3o *b4o (N → ∞) . . . . | 6N ♦ 8 | 4 4 4 | 2 2 2 -----------+----+-----+----------+------- . x . . | 2 | 24N | 1 1 1 | 1 1 1 -----------+----+-----+----------+------- o3x . . | 3 | 3 | 8N * * | 1 1 0 . x3o . | 3 | 3 | * 8N * | 1 0 1 . x . *b4o | 4 | 4 | * * 6N | 0 1 1 -----------+----+-----+----------+------- o3x3o . ♦ 6 | 12 | 4 4 0 | 2N * * o3x . *b4o ♦ 12 | 24 | 8 0 6 | * N * . x3o *b4o ♦ 12 | 24 | 0 8 6 | * * N
x3o3x *b4o (N → ∞) . . . . | 6N ♦ 4 4 | 4 4 4 | 4 1 1 -----------+----+---------+----------+------- x . . . | 2 | 12N * | 1 2 0 | 2 1 0 . . x . | 2 | * 12N | 0 2 1 | 2 0 1 -----------+----+---------+----------+------- x3o . . | 3 | 3 0 | 8N * * | 1 1 0 x . x . | 4 | 2 2 | * 6N * | 2 0 0 . o3x . | 3 | 0 3 | * * 8N | 1 0 1 -----------+----+---------+----------+------- x3o3x . ♦ 12 | 12 12 | 4 6 4 | 2N * * x3o . *b4o ♦ 6 | 12 0 | 8 0 0 | * N * . o3x *b4o ♦ 6 | 0 12 | 0 0 8 | * * N
o3x3o *b4/3o (N → ∞) . . . . | 6N ♦ 8 | 4 4 4 | 2 2 2 -------------+----+-----+----------+------- . x . . | 2 | 24N | 1 1 1 | 1 1 1 -------------+----+-----+----------+------- o3x . . | 3 | 3 | 8N * * | 1 1 0 . x3o . | 3 | 3 | * 8N * | 1 0 1 . x . *b4/3o | 4 | 4 | * * 6N | 0 1 1 -------------+----+-----+----------+------- o3x3o . ♦ 6 | 12 | 4 4 0 | 2N * * o3x . *b4/3o ♦ 12 | 24 | 8 0 6 | * N * . x3o *b4/3o ♦ 12 | 24 | 0 8 6 | * * N
x3o3x *b4/3o (N → ∞) . . . . | 6N ♦ 4 4 | 4 4 4 | 4 1 1 -------------+----+---------+----------+------- x . . . | 2 | 12N * | 1 2 0 | 2 1 0 . . x . | 2 | * 12N | 0 2 1 | 2 0 1 -------------+----+---------+----------+------- x3o . . | 3 | 3 0 | 8N * * | 1 1 0 x . x . | 4 | 2 2 | * 6N * | 2 0 0 . o3x . | 3 | 0 3 | * * 8N | 1 0 1 -------------+----+---------+----------+------- x3o3x . ♦ 12 | 12 12 | 4 6 4 | 2N * * x3o . *b4/3o ♦ 6 | 12 0 | 8 0 0 | * N * . o3x *b4/3o ♦ 6 | 0 12 | 0 0 8 | * * N
x3o3x3o3*a (N → ∞) . . . . | 6N ♦ 4 4 | 2 4 2 2 2 | 2 1 2 1 -----------+----+---------+----------------+-------- x . . . | 2 | 12N * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 12N | 0 1 0 1 1 | 1 0 1 1 -----------+----+---------+----------------+-------- x3o . . | 3 | 3 0 | 4N * * * * | 1 1 0 0 x . x . | 4 | 2 2 | * 6N * * * | 1 0 1 0 x . . o3*a | 3 | 3 0 | * * 4N * * | 0 1 1 0 . o3x . | 3 | 0 3 | * * * 4N * | 1 0 0 1 . . x3o | 3 | 0 3 | * * * * 4N | 0 0 1 1 -----------+----+---------+----------------+-------- x3o3x . ♦ 12 | 12 12 | 4 6 0 4 0 | N * * * x3o . o3*a ♦ 6 | 12 0 | 4 0 4 0 0 | * N * * x . x3o3*a ♦ 12 | 12 12 | 0 6 4 0 4 | * * N * . o3x3o ♦ 6 | 0 12 | 0 0 0 4 4 | * * * N
x3o3x3/2o3/2*a (N → ∞) . . . . | 6N ♦ 4 4 | 2 4 2 2 2 | 2 1 2 1 ---------------+----+---------+----------------+-------- x . . . | 2 | 12N * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 12N | 0 1 0 1 1 | 1 0 1 1 ---------------+----+---------+----------------+-------- x3o . . | 3 | 3 0 | 4N * * * * | 1 1 0 0 x . x . | 4 | 2 2 | * 6N * * * | 1 0 1 0 x . . o3/2*a | 3 | 3 0 | * * 4N * * | 0 1 1 0 . o3x . | 3 | 0 3 | * * * 4N * | 1 0 0 1 . . x3/2o | 3 | 0 3 | * * * * 4N | 0 0 1 1 ---------------+----+---------+----------------+-------- x3o3x . ♦ 12 | 12 12 | 4 6 0 4 0 | N * * * x3o . o3/2*a ♦ 6 | 12 0 | 4 0 4 0 0 | * N * * x . x3/2o3/2*a ♦ 12 | 12 12 | 0 6 4 0 4 | * * N * . o3x3/2o ♦ 6 | 0 12 | 0 0 0 4 4 | * * * N
s4x3o4o (N → ∞) demi( . . . . ) | 6N ♦ 4 4 | 4 4 4 | 1 4 1 ----------------+----+---------+----------+------- demi( . x . . ) | 2 | 12N * | 1 2 0 | 1 2 0 sefa( s4x . . ) | 2 | * 12N | 0 2 1 | 0 2 1 ----------------+----+---------+----------+------- demi( . x3o . ) | 3 | 3 0 | 8N * * | 1 1 0 s4x . . | 4 | 2 2 | * 6N * | 0 2 0 sefa( s4x3o . ) | 3 | 0 3 | * * 8N | 0 1 1 ----------------+----+---------+----------+------- demi( . x3o4o ) ♦ 6 | 12 0 | 8 0 0 | N * * s4x3o . ♦ 12 | 12 12 | 4 6 4 | * 2N * sefa( s4x3o4o ) ♦ 6 | 0 12 | 0 0 8 | * * N starting figure: x4x3o4o
o3x3o *b4s demi( . . . . ) | 6N ♦ 4 4 | 2 2 4 2 2 | 1 2 2 1 -------------------+----+---------+----------------+-------- demi( . x . . ) | 2 | 12N * | 1 1 1 0 0 | 1 1 1 0 sefa( . x . *b4s ) | 2 | * 12N | 0 0 1 1 1 | 0 1 1 1 -------------------+----+---------+----------------+-------- demi( o3x . . ) | 3 | 3 0 | 4N * * * * | 1 1 0 0 demi( . x3o . ) | 3 | 3 0 | * 4N * * * | 1 0 1 0 . x . *b4s | 4 | 2 2 | * * 6N * * | 0 1 1 0 sefa( o3x . *b4s ) | 3 | 0 3 | * * * 4N * | 0 1 0 1 sefa( . x3o *b4s ) | 3 | 0 3 | * * * * 4N | 0 0 1 1 -------------------+----+---------+----------------+-------- demi( o3x3o . ) ♦ 6 | 12 0 | 4 4 0 0 0 | N * * * o3x . *b4s ♦ 12 | 12 12 | 4 0 6 4 0 | * N * * . x3o *b4s ♦ 12 | 12 12 | 0 4 6 0 4 | * * N * sefa( o3x3o *b4s ) ♦ 6 | 0 12 | 0 0 0 4 4 | * * * N starting figure: o3x3o *b4x
qo4ox3xo4oq&#zx (N → ∞) → height = 0 (tegum sum of 2 inverted (q,x)-srichs) o.4o.3o.4o. & | 12N ♦ 4 4 | 2 2 2 6 | 1 3 2 ------------------+-----+---------+--------------+-------- .. .. x. .. & | 2 | 24N * | 1 1 0 1 | 1 1 1 oo4oo3oo4oo&#x | 2 | * 24N | 0 0 1 2 | 0 2 1 ------------------+-----+---------+--------------+-------- .. o.3x. .. & | 3 | 3 0 | 8N * * * | 1 0 1 .. .. x.4o. & | 4 | 4 0 | * 6N * * | 1 1 0 qo .. .. oq&#zx | 4 | 0 4 | * * 6N * | 0 2 0 .. ox .. ..&#x & | 3 | 1 2 | * * * 24N | 0 1 1 ------------------+-----+---------+--------------+-------- .. o.3x.4o. & ♦ 12 | 24 0 | 8 6 0 0 | N * * qo4ox .. oq&#zx & ♦ 12 | 8 16 | 0 2 4 8 | * 3N * .. ox3xo ..&#x ♦ 6 | 6 6 | 2 0 0 6 | * * 4N
:oq:4:xo:4:oo:&##x (N → ∞) → all heights = 1/sqrt(2) = 0.707107 o. 4 o. 4 o. | 2N * ♦ 4 2 2 | 2 4 2 4 | 4 2 .o 4 .o 4 .o | * N ♦ 0 4 4 | 0 4 4 4 | 4 2 -------------------+------+----------+------------+---- .. x. .. | 2 0 | 4N * * | 1 1 0 1 | 2 1 oo 4 oo 4 oo &#x | 1 1 | * 4N * | 0 2 1 0 | 2 1 :oo:4:oo:4:oo:&#x | 1 1 | * * 4N | 0 0 1 2 | 2 1 -------------------+------+----------+------------+---- o. 4 x. .. | 4 0 | 4 0 0 | N * * * | 2 0 .. xo .. &#x | 2 1 | 1 2 0 | * 4N * * | 1 1 :oq: .. .. &#xt | 2 2 | 0 2 2 | * * 2N * | 2 0 .. :xo: .. &#x | 2 1 | 1 0 2 | * * * 4N | 1 1 -------------------+------+----------+------------+---- :oq:4:xo: .. &#xt ♦ 8 4 | 8 8 8 | 2 4 4 4 | N * .. :xo:4:oo:&#xt ♦ 4 2 | 4 4 4 | 0 4 0 4 | * N
:xxo:3:xox:3:oxx:3*a&##x (N → ∞) → all heights = sqrt(2/3) = 0.816497 o.. 3 o.. 3 o.. 3*a | 3N * * ♦ 2 2 2 0 0 0 0 0 2 | 1 1 2 2 1 0 0 0 0 0 0 0 2 2 1 | 1 1 0 2 1 1 .o. 3 .o. 3 .o. 3*a | * 3N * ♦ 0 0 2 2 2 2 0 0 0 | 0 0 2 1 2 1 1 2 1 2 0 0 0 0 0 | 2 1 1 1 0 1 ..o 3 ..o 3 ..o 3*a | * * 3N ♦ 0 0 0 0 0 2 2 2 2 | 0 0 0 0 0 0 0 1 2 2 1 1 1 2 2 | 1 0 1 1 1 2 -------------------------+----------+----------------------------+----------------------------------------+------------ x.. ... ... | 2 0 0 | 3N * * * * * * * * | 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 | 1 0 0 1 1 0 ... x.. ... | 2 0 0 | * 3N * * * * * * * | 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 | 0 1 0 1 0 1 oo. 3 oo. 3 oo. 3*a&#x | 1 1 0 | * * 6N * * * * * * | 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 .x. ... ... | 0 2 0 | * * * 3N * * * * * | 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 | 1 0 1 1 0 0 ... ... .x. | 0 2 0 | * * * * 3N * * * * | 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 | 1 1 0 0 0 1 .oo 3 .oo 3 .oo 3*a&#x | 0 1 1 | * * * * * 6N * * * | 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 | 1 0 1 0 0 1 ... ..x ... | 0 0 2 | * * * * * * 3N * * | 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 | 0 0 1 1 0 1 ... ... ..x | 0 0 2 | * * * * * * * 3N * | 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 | 1 0 0 0 1 1 :o.o:3:o.o:3:o.o:3*a&#x | 1 0 1 | * * * * * * * * 6N | 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 | 0 0 0 1 1 1 -------------------------+----------+----------------------------+----------------------------------------+------------ x.. ... o.. 3*a | 3 0 0 | 3 0 0 0 0 0 0 0 0 | N * * * * * * * * * * * * * * | 1 0 0 0 1 0 ... x.. 3 o.. | 3 0 0 | 0 3 0 0 0 0 0 0 0 | * N * * * * * * * * * * * * * | 0 1 0 0 0 1 xx. ... ... &#x | 2 2 0 | 1 0 2 1 0 0 0 0 0 | * * 3N * * * * * * * * * * * * | 1 0 0 1 0 0 ... xo. ... &#x | 2 1 0 | 0 1 2 0 0 0 0 0 0 | * * * 3N * * * * * * * * * * * | 0 1 0 1 0 0 ... ... ox. &#x | 1 2 0 | 0 0 2 0 1 0 0 0 0 | * * * * 3N * * * * * * * * * * | 1 1 0 0 0 0 .x. 3 .o. | 0 3 0 | 0 0 0 3 0 0 0 0 0 | * * * * * N * * * * * * * * * | 0 0 1 1 0 0 ... .o. 3 .x. | 0 3 0 | 0 0 0 0 3 0 0 0 0 | * * * * * * N * * * * * * * * | 0 1 0 0 0 1 .xo ... ... &#x | 0 2 1 | 0 0 0 1 0 2 0 0 0 | * * * * * * * 3N * * * * * * * | 1 0 1 0 0 0 ... .ox ... &#x | 0 1 2 | 0 0 0 0 0 2 1 0 0 | * * * * * * * * 3N * * * * * * | 0 0 1 0 0 1 ... ... .xx &#x | 0 2 2 | 0 0 0 0 1 2 0 1 0 | * * * * * * * * * 3N * * * * * | 1 0 0 0 0 1 ..o 3 ..x ... | 0 0 3 | 0 0 0 0 0 0 3 0 0 | * * * * * * * * * * N * * * * | 0 0 1 1 0 0 ..o ... ..x 3*a | 0 0 3 | 0 0 0 0 0 0 0 3 0 | * * * * * * * * * * * N * * * | 1 0 0 0 1 0 :x.o: ... ... &#x | 2 0 1 | 1 0 0 0 0 0 0 0 2 | * * * * * * * * * * * * 3N * * | 0 0 0 1 1 0 ... :x.x: ... &#x | 2 0 2 | 0 1 0 0 0 0 1 0 2 | * * * * * * * * * * * * * 3N * | 0 0 0 1 0 1 ... ... :o.x: &#x | 1 0 2 | 0 0 0 0 0 0 0 1 2 | * * * * * * * * * * * * * * 3N | 0 0 0 0 1 1 -------------------------+----------+----------------------------+----------------------------------------+------------ xxo ... oxx 3*a&#xt ♦ 3 6 3 | 3 0 6 3 3 6 0 3 0 | 1 0 3 0 3 0 0 3 0 3 0 1 0 0 0 | N * * * * * ... xo. 3 ox. &#x ♦ 3 3 0 | 0 3 6 0 3 0 0 0 0 | 0 1 0 3 3 0 1 0 0 0 0 0 0 0 0 | * N * * * * .xo 3 .ox ... &#x ♦ 0 3 3 | 0 0 0 3 0 6 3 0 0 | 0 0 0 0 0 1 0 3 3 0 1 0 0 0 0 | * * N * * * :xxo:3:xox: ... &#xt ♦ 6 3 3 | 3 3 6 3 0 0 3 0 6 | 0 0 3 3 0 1 0 0 0 0 1 0 3 3 0 | * * * N * * :x.o: ... :o.x:3*a&#x ♦ 3 0 3 | 3 0 0 0 0 0 0 3 6 | 1 0 0 0 0 0 0 0 0 0 0 1 3 0 3 | * * * * N * ... :xox:3:oxx: &#xt ♦ 3 3 6 | 0 3 0 0 3 6 3 3 6 | 0 1 0 0 0 0 1 0 3 3 0 0 0 3 3 | * * * * * N
© 2004-2024 | top of page |