Acronym pex tac
Name partially expanded triacontaditeron
Circumradius ...
Lace city
in approx. ASCII-art
       o3o4o       		-- o3o3o4o (point)
                   
                   
                   
o3o4o  x3o4o  o3o4o		-- x3o3o4o (hex)
                   
                   
                   
                   
                   
o3o4o  x3o4o  o3o4o		-- x3o3o4o (hex)
                   
                   
                   
       o3o4o       		-- o3o3o4o (point)

  |      |      +-- line
  |      +--------- pex hex
  +---------------- line
       line        		-- line
                   
                   
                   
line  esquidpy line		-- pex hex
                   
                   
                   
       line        		-- line
Coordinates
  • (0, 0, 0, 0; (1+sqrt(2))/2)   & all changes of sign
  • (1/sqrt(2), 0, 0, 0; 1/2)      & all permutations within all but last coords, all changes of sign
Face vector 18, 72, 136, 128, 48
Confer
uniform relative:
tac   scant   hexip  
related segmentotera:
hexpy  
general polytopal classes:
partial Stott expansions  

This CRF polyteron can be obtained from tac by partial Stott expanding only within an axial direction, orthogonally to its equatorial hex cross-section. In fact it just introduces there a hexip in between the two hexpies of either side. Thence it could be seen as an external blend of these 3 components.


Incidence matrix according to Dynkin symbol

oxxo3oooo3oooo4oooo&#xt   → outer heights = 1/sqrt(2) = 0.707107
                            inner height = 1
(point || pseudo hex || pseudo hex || point)

o...3o...3o...4o...     & | 2  *   8  0 0 | 24  0  0 | 32  0  0 | 16  0
.o..3.o..3.o..4.o..     & | * 16 |  1  6 1 |  6 12  6 | 12  8 12 |  8  8
--------------------------+------+---------+----------+----------+------
oo..3oo..3oo..4oo..&#x  & | 1  1 | 16  * *   6  0  0 | 12  0  0 |  8  0
.x.. .... .... ....     & | 0  2 |  * 48 * |  1  4  1 |  4  4  4 |  4  4
.oo.3.oo.3.oo.4.oo.&#x    | 0  2 |  *  * 8   0  0  6 |  0  0 12 |  0  8
--------------------------+------+---------+----------+----------+------
ox.. .... .... ....&#x  & | 1  2 |  2  1 0 | 48  *  * |  4  0  0 |  4  0
.x..3.o.. .... ....     & | 0  3 |  0  3 0 |  * 64  * |  1  2  1 |  2  2
.xx. .... .... ....&#x    | 0  4 |  0  2 2 |  *  * 24 |  0  0  4 |  0  4
--------------------------+------+---------+----------+----------+------
ox..3oo.. .... ....&#x  &  1  3 |  3  3 0 |  3  1  0 | 64  *  * |  2  0
.x..3.o..3.o.. ....     &  0  4 |  0  6 0 |  0  4  0 |  * 32  * |  1  1
.xx.3.oo. .... ....&#x     0  6 |  0  6 3 |  0  2  3 |  *  * 32 |  0  2
--------------------------+------+---------+----------+----------+------
ox..3oo..3oo.. ....&#x  &  1  4 |  4  6 0 |  6  4  0 |  4  1  0 | 32  *
.xx.3.oo.3.oo. ....&#x     0  8 |  0 12 4 |  0  8  6 |  0  2  4 |  * 16

wx ox3oo3oo4oo&#zx   → height = 0

o. o.3o.3o.4o.    | 2  *   8 0  0 | 24  0  0 | 32  0  0 | 16  0
.o .o3.o3.o4.o    | * 16 |  1 1  6 |  6  6 12 | 12 12  8 |  8  8
------------------+------+---------+----------+----------+------
oo oo3oo3oo4oo&#x | 1  1 | 16 *  *   6  0  0 | 12  0  0 |  8  0
.x .. .. .. ..    | 0  2 |  * 8  *   0  6  0 |  0 12  0 |  0  8
.. .x .. .. ..    | 0  2 |  * * 48 |  1  1  4 |  4  4  4 |  4  4
------------------+------+---------+----------+----------+------
.. ox .. .. ..&#x | 1  2 |  2 0  1 | 48  *  * |  4  0  0 |  4  0
.x .x .. .. ..    | 0  4 |  0 2  2 |  * 24  * |  0  4  0 |  0  4
.. .x3.o .. ..    | 0  3 |  0 0  3 |  *  * 64 |  1  1  2 |  2  2
------------------+------+---------+----------+----------+------
.. ox3oo .. ..&#x  1  3 |  3 0  3 |  3  0  1 | 64  *  * |  2  0
.x .x3.o .. ..     0  6 |  0 3  6 |  0  3  2 |  * 32  * |  0  2
.. .x3.o3.o ..     0  4 |  0 0  6 |  0  0  4 |  *  * 32 |  1  1
------------------+------+---------+----------+----------+------
.. ox3oo3oo ..&#x  1  4 |  4 0  6 |  6  0  4 |  4  0  1 | 32  *
.x .x3.o3.o ..     0  8 |  0 4 12 |  0  6  8 |  0  4  2 |  * 16

© 2004-2024
top of page