Acronym | squahop |
Name |
square - heptapenton duoprism, vertex figure of barn |
Circumradius | sqrt(13/14) = 0.963624 |
Volume | sqrt(7)/5760 = 0.00045933 |
Face vector | 28, 112, 231, 301, 259, 147, 53, 11 |
Confer |
|
Incidence matrix according to Dynkin symbol
x4o x3o3o3o3o3o . . . . . . . . | 28 | 2 6 | 1 12 15 | 6 30 20 | 15 40 15 | 20 30 6 | 15 12 1 | 6 2 ----------------+----+-------+----------+------------+-----------+----------+---------+---- x . . . . . . . | 2 | 28 * | 1 6 0 | 6 15 0 | 15 20 0 | 20 15 0 | 15 6 0 | 6 1 . . x . . . . . | 2 | * 84 | 0 2 5 | 1 10 10 | 5 20 10 | 10 20 5 | 10 10 1 | 5 2 ----------------+----+-------+----------+------------+-----------+----------+---------+---- x4o . . . . . . | 4 | 4 0 | 7 * * ♦ 6 0 0 | 15 0 0 | 20 0 0 | 15 0 0 | 6 0 x . x . . . . . | 4 | 2 2 | * 84 * | 1 5 0 | 5 10 0 | 10 10 0 | 10 5 0 | 5 1 . . x3o . . . . | 3 | 0 3 | * * 140 | 0 2 4 | 1 8 6 | 4 12 4 | 6 8 1 | 4 2 ----------------+----+-------+----------+------------+-----------+----------+---------+---- x4o x . . . . . ♦ 8 | 8 4 | 2 4 0 | 21 * * ♦ 5 0 0 | 10 0 0 | 10 0 0 | 5 0 x . x3o . . . . ♦ 6 | 3 6 | 0 3 2 | * 140 * | 1 4 0 | 4 6 0 | 6 4 0 | 4 1 . . x3o3o . . . ♦ 4 | 0 6 | 0 0 4 | * * 140 | 0 2 3 | 1 6 3 | 3 6 1 | 3 2 ----------------+----+-------+----------+------------+-----------+----------+---------+---- x4o x3o . . . . ♦ 12 | 12 12 | 3 12 4 | 3 4 0 | 35 * * ♦ 4 0 0 | 6 0 0 | 4 0 x . x3o3o . . . ♦ 8 | 4 12 | 0 6 8 | 0 4 2 | * 140 * | 1 3 0 | 3 3 0 | 3 1 . . x3o3o3o . . ♦ 5 | 0 10 | 0 0 10 | 0 0 5 | * * 84 | 0 2 2 | 1 4 1 | 2 2 ----------------+----+-------+----------+------------+-----------+----------+---------+---- x4o x3o3o . . . ♦ 16 | 16 24 | 4 24 16 | 6 16 4 | 4 4 0 | 35 * * | 3 0 0 | 3 0 x . x3o3o3o . . ♦ 10 | 5 20 | 0 10 20 | 0 10 10 | 0 5 2 | * 84 * | 1 2 0 | 2 1 . . x3o3o3o3o . ♦ 6 | 0 15 | 0 0 20 | 0 0 15 | 0 0 6 | * * 28 | 0 2 1 | 1 2 ----------------+----+-------+----------+------------+-----------+----------+---------+---- x4o x3o3o3o . . ♦ 20 | 20 40 | 5 40 40 | 10 40 20 | 10 20 4 | 5 4 0 | 21 * * | 2 0 x . x3o3o3o3o . ♦ 12 | 6 30 | 0 15 40 | 0 20 30 | 0 15 12 | 0 6 2 | * 28 * | 1 1 . . x3o3o3o3o3o ♦ 7 | 0 21 | 0 0 35 | 0 0 35 | 0 0 21 | 0 0 7 | * * 4 | 0 2 ----------------+----+-------+----------+------------+-----------+----------+---------+---- x4o x3o3o3o3o . ♦ 24 | 24 60 | 6 60 80 | 15 80 60 | 20 60 24 | 15 24 4 | 6 4 0 | 7 * x . x3o3o3o3o3o ♦ 14 | 7 42 | 0 21 70 | 0 35 70 | 0 35 42 | 0 21 14 | 0 7 2 | * 4
x x x3o3o3o3o3o . . . . . . . . | 28 | 1 1 6 | 1 6 6 15 | 6 15 15 20 | 15 20 20 15 | 20 15 15 6 | 15 6 6 1 | 6 1 1 ----------------+----+----------+-------------+--------------+-------------+-------------+------------+------ x . . . . . . . | 2 | 14 * * | 1 6 0 0 | 6 15 0 0 | 15 20 0 0 | 20 15 0 0 | 15 6 0 0 | 6 1 0 . x . . . . . . | 2 | * 14 * | 1 0 6 0 | 6 0 15 0 | 15 0 20 0 | 20 0 15 0 | 15 0 6 0 | 6 0 1 . . x . . . . . | 2 | * * 84 | 0 1 1 5 | 1 5 5 10 | 5 10 10 10 | 10 10 10 5 | 10 5 5 1 | 5 1 1 ----------------+----+----------+-------------+--------------+-------------+-------------+------------+------ x x . . . . . . | 4 | 2 2 0 | 7 * * * ♦ 6 0 0 0 | 15 0 0 0 | 20 0 0 0 | 15 0 0 0 | 6 0 0 x . x . . . . . | 4 | 2 0 2 | * 42 * * | 1 5 0 0 | 5 10 0 0 | 10 10 0 0 | 10 5 0 0 | 5 1 0 . x x . . . . . | 4 | 0 2 2 | * * 42 * | 1 0 5 0 | 5 0 10 0 | 10 0 10 0 | 10 0 5 0 | 5 0 1 . . x3o . . . . | 3 | 0 0 3 | * * * 140 | 0 1 1 4 | 1 4 4 6 | 4 6 6 4 | 6 4 4 1 | 4 1 1 ----------------+----+----------+-------------+--------------+-------------+-------------+------------+------ x x x . . . . . ♦ 8 | 4 4 4 | 2 2 2 0 | 21 * * * ♦ 5 0 0 0 | 10 0 0 0 | 10 0 0 0 | 5 0 0 x . x3o . . . . ♦ 6 | 3 0 6 | 0 3 0 2 | * 70 * * | 1 4 0 0 | 4 6 0 0 | 6 4 0 0 | 4 1 0 . x x3o . . . . ♦ 6 | 0 3 6 | 0 0 3 2 | * * 70 * | 1 0 4 0 | 4 0 6 0 | 6 0 4 0 | 4 0 1 . . x3o3o . . . ♦ 4 | 0 0 6 | 0 0 0 4 | * * * 140 | 0 1 1 3 | 1 3 3 3 | 3 3 3 1 | 3 1 1 ----------------+----+----------+-------------+--------------+-------------+-------------+------------+------ x x x3o . . . . ♦ 12 | 6 6 12 | 3 6 6 4 | 3 2 2 0 | 35 * * * ♦ 4 0 0 0 | 6 0 0 0 | 4 0 0 x . x3o3o . . . ♦ 8 | 4 0 12 | 0 6 0 8 | 0 4 0 2 | * 70 * * | 1 3 0 0 | 3 3 0 0 | 3 1 0 . x x3o3o . . . ♦ 8 | 0 4 12 | 0 0 6 8 | 0 0 4 2 | * * 70 * | 1 0 3 0 | 3 0 3 0 | 3 0 1 . . x3o3o3o . . ♦ 5 | 0 0 10 | 0 0 0 10 | 0 0 0 5 | * * * 84 | 0 1 1 2 | 1 2 2 1 | 2 1 1 ----------------+----+----------+-------------+--------------+-------------+-------------+------------+------ x x x3o3o . . . ♦ 16 | 8 8 24 | 4 12 12 16 | 6 8 8 4 | 4 2 2 0 | 35 * * * | 3 0 0 0 | 3 0 0 x . x3o3o3o . . ♦ 10 | 5 0 20 | 0 10 0 20 | 0 10 0 10 | 0 5 0 2 | * 42 * * | 1 2 0 0 | 2 1 0 . x x3o3o3o . . ♦ 10 | 0 5 20 | 0 0 10 20 | 0 0 10 10 | 0 0 5 2 | * * 42 * | 1 0 2 0 | 2 0 1 . . x3o3o3o3o . ♦ 6 | 0 0 15 | 0 0 0 20 | 0 0 0 15 | 0 0 0 6 | * * * 28 | 0 1 1 1 | 1 1 1 ----------------+----+----------+-------------+--------------+-------------+-------------+------------+------ x x x3o3o3o . . ♦ 20 | 10 10 40 | 5 20 20 40 | 10 20 20 20 | 10 10 10 4 | 5 2 2 0 | 21 * * * | 2 0 0 x . x3o3o3o3o . ♦ 12 | 6 0 30 | 0 15 0 40 | 0 20 0 30 | 0 15 0 12 | 0 6 0 2 | * 14 * * | 1 1 0 . x x3o3o3o3o . ♦ 12 | 0 6 30 | 0 0 15 40 | 0 0 20 30 | 0 0 15 12 | 0 0 6 2 | * * 14 * | 1 0 1 . . x3o3o3o3o3o ♦ 7 | 0 0 21 | 0 0 0 35 | 0 0 0 35 | 0 0 0 21 | 0 0 0 7 | * * * 4 | 0 1 1 ----------------+----+----------+-------------+--------------+-------------+-------------+------------+------ x x x3o3o3o3o . ♦ 24 | 12 12 60 | 6 30 30 80 | 15 40 40 60 | 20 30 30 24 | 15 12 12 4 | 6 2 2 0 | 7 * * x . x3o3o3o3o3o ♦ 14 | 7 0 42 | 0 21 0 70 | 0 35 0 70 | 0 35 0 42 | 0 21 0 14 | 0 7 0 2 | * 2 * . x x3o3o3o3o3o ♦ 14 | 0 7 42 | 0 0 21 70 | 0 0 35 70 | 0 0 35 42 | 0 0 21 14 | 0 0 7 2 | * * 2
© 2004-2025 | top of page |