| Acronym | ... |
| Name | ooofxfooo3xoxxoxxox5ofxofoxfo&#xt |
| Face vector | 400, 1500, 1468, 368 |
| Confer |
|
The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2oxofx3oooo(-x)5ooxof&#zx. Then into VFfxo2o(-x)ofx3oxoo(-x)5ooxof&#zx. And finally into VFfxo2ooofx3o(-x)oo(-x)5ofxof&#zx. Then a Stott expansion wrt. the third node produces this polychoron.
It further allows for a bistratically parabidiminishing fxo ofx3xxo5xof&#zx too.
Incidence matrix according to Dynkin symbol
ooofxfooo3xoxxoxxox5ofxofoxfo&#xt → height(1,2) = height(3,4) = height(6,7) = height(8,9) = (sqrt(5)-1)/4 = 0.309017
height(2,3) = height(4,5) = height(5,6) = height(7,8) = 1/2
(id || pseudo f-doe || pseudo tid || pseudo (f,x)-ti || pseudo (x,f)-srid || pseudo (f,x)-ti || pseudo tid || pseudo f-doe || id)
o........3o........5o........ & | 60 * * * * ♦ 4 2 0 0 0 0 0 0 0 0 0 | 2 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 2 0 0 0 0 0 0
.o.......3.o.......5.o....... & | * 40 * * * ♦ 0 3 3 0 0 0 0 0 0 0 0 | 0 0 3 3 3 0 0 0 0 0 0 0 0 0 0 0 | 0 1 3 1 0 0 0 0 0
..o......3..o......5..o...... & | * * 120 * * | 0 0 1 2 1 2 2 0 0 0 0 | 0 0 0 1 2 1 2 2 1 2 2 0 0 0 0 0 | 0 0 2 1 1 1 2 0 0
...o.....3...o.....5...o..... & | * * * 120 * | 0 0 0 0 0 2 0 2 2 1 0 | 0 0 0 0 0 0 2 1 0 0 2 1 2 2 2 0 | 0 0 1 0 0 1 2 1 2
....o....3....o....5....o.... | * * * * 60 | 0 0 0 0 0 0 4 0 4 0 2 | 0 0 0 0 0 0 0 0 4 2 4 0 2 0 2 1 | 0 0 0 0 2 2 2 0 1
------------------------------------+------------------+------------------------------------------+----------------------------------------------------------+---------------------------
......... x........ ......... & | 2 0 0 0 0 | 120 * * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 0 0
oo.......3oo.......5oo.......&#x & | 1 1 0 0 0 | * 120 * * * * * * * * * | 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 2 0 0 0 0 0 0
.oo......3.oo......5.oo......&#x & | 0 1 1 0 0 | * * 120 * * * * * * * * | 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 | 0 0 2 1 0 0 0 0 0
......... ..x...... ......... & | 0 0 2 0 0 | * * * 120 * * * * * * * | 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 | 0 0 1 1 1 0 1 0 0
......... ......... ..x...... & | 0 0 2 0 0 | * * * * 60 * * * * * * | 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 | 0 0 2 0 0 1 0 0 0
..oo.....3..oo.....5..oo.....&#x & | 0 0 1 1 0 | * * * * * 240 * * * * * | 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 | 0 0 1 0 0 1 1 0 0
..o.o....3..o.o....5..o.o....&#x & | 0 0 1 0 1 | * * * * * * 240 * * * * | 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 | 0 0 0 0 1 1 1 0 0
......... ...x..... ......... & | 0 0 0 2 0 | * * * * * * * 120 * * * | 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 | 0 0 1 0 0 0 1 1 1
...oo....3...oo....5...oo....&#x & | 0 0 0 1 1 | * * * * * * * * 240 * * | 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 | 0 0 0 0 0 1 1 0 1
...o.o...3...o.o...5...o.o...&#x | 0 0 0 2 0 | * * * * * * * * * 60 * | 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 | 0 0 0 0 0 1 0 1 2
....x.... ......... ......... | 0 0 0 0 2 | * * * * * * * * * * 60 | 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 | 0 0 0 0 2 1 0 0 0
------------------------------------+------------------+------------------------------------------+----------------------------------------------------------+---------------------------
o........3x........ ......... & | 3 0 0 0 0 | 3 0 0 0 0 0 0 0 0 0 0 | 40 * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0
......... x........5o........ & | 5 0 0 0 0 | 5 0 0 0 0 0 0 0 0 0 0 | * 24 * * * * * * * * * * * * * * | 1 0 1 0 0 0 0 0 0
......... xo....... .........&#x & | 2 1 0 0 0 | 1 2 0 0 0 0 0 0 0 0 0 | * * 120 * * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0
......... ......... ofx......&#x & | 1 2 2 0 0 | 0 2 2 0 1 0 0 0 0 0 0 | * * * 60 * * * * * * * * * * * * | 0 0 2 0 0 0 0 0 0
......... .ox...... .........&#x & | 0 1 2 0 0 | 0 0 2 1 0 0 0 0 0 0 0 | * * * * 120 * * * * * * * * * * * | 0 0 1 1 0 0 0 0 0
..o......3..x...... ......... & | 0 0 3 0 0 | 0 0 0 3 0 0 0 0 0 0 0 | * * * * * 40 * * * * * * * * * * | 0 0 0 1 1 0 0 0 0
......... ..xx..... .........&#x & | 0 0 2 2 0 | 0 0 0 1 0 2 0 1 0 0 0 | * * * * * * 120 * * * * * * * * * | 0 0 1 0 0 0 1 0 0
......... ......... ..xo.....&#x & | 0 0 2 1 0 | 0 0 0 0 1 2 0 0 0 0 0 | * * * * * * * 120 * * * * * * * * | 0 0 1 0 0 1 0 0 0
..o.x.... ......... .........&#x & | 0 0 1 0 2 | 0 0 0 0 0 0 2 0 0 0 1 | * * * * * * * * 120 * * * * * * * | 0 0 0 0 1 1 0 0 0
......... ..x.o.... .........&#x & | 0 0 2 0 1 | 0 0 0 1 0 0 2 0 0 0 0 | * * * * * * * * * 120 * * * * * * | 0 0 0 0 1 0 1 0 0
..ooo....3..ooo....5..ooo....&#x & | 0 0 1 1 1 | 0 0 0 0 0 1 1 0 1 0 0 | * * * * * * * * * * 240 * * * * * | 0 0 0 0 0 1 1 0 0
......... ...x.....5...o..... & | 0 0 0 5 0 | 0 0 0 0 0 0 0 5 0 0 0 | * * * * * * * * * * * 24 * * * * | 0 0 1 0 0 0 0 1 0
......... ...xo.... .........&#x & | 0 0 0 2 1 | 0 0 0 0 0 0 0 1 2 0 0 | * * * * * * * * * * * * 120 * * * | 0 0 0 0 0 0 1 0 1
......... ...x.x... .........&#x | 0 0 0 4 0 | 0 0 0 0 0 0 0 2 0 2 0 | * * * * * * * * * * * * * 60 * * | 0 0 0 0 0 0 0 1 1
...ooo...3...ooo...5...ooo...&#x | 0 0 0 2 1 | 0 0 0 0 0 0 0 0 2 1 0 | * * * * * * * * * * * * * * 120 * | 0 0 0 0 0 1 0 0 1
....x....3....o.... ......... | 0 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * * 20 | 0 0 0 0 2 0 0 0 0
------------------------------------+------------------+------------------------------------------+----------------------------------------------------------+---------------------------
o........3x........5o........ & ♦ 30 0 0 0 0 | 60 0 0 0 0 0 0 0 0 0 0 | 20 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * *
oo.......3xo....... .........&#x & ♦ 3 1 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 | 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 | * 40 * * * * * * *
......... xoxx.....5ofxo.....&#xt & ♦ 5 5 10 5 0 | 5 10 10 5 5 10 0 5 0 0 0 | 0 1 5 5 5 0 5 5 0 0 0 1 0 0 0 0 | * * 24 * * * * * *
.oo......3.ox...... .........&#x & ♦ 0 1 3 0 0 | 0 0 3 3 0 0 0 0 0 0 0 | 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 | * * * 40 * * * * *
..o.x....3..x.o.... .........&#x & ♦ 0 0 3 0 3 | 0 0 0 3 0 0 6 0 0 0 3 | 0 0 0 0 0 1 0 0 3 3 0 0 0 0 0 1 | * * * * 40 * * * *
..ofxfo.. ......... ..xofox..&#xt ♦ 0 0 4 4 4 | 0 0 0 0 2 8 8 0 8 2 2 | 0 0 0 0 0 0 0 4 4 0 8 0 0 0 4 0 | * * * * * 30 * * *
......... ..xxo.... .........&#x & ♦ 0 0 2 2 1 | 0 0 0 1 0 2 2 1 2 0 0 | 0 0 0 0 0 0 1 0 0 1 2 0 1 0 0 0 | * * * * * * 120 * *
......... ...x.x...5...o.o...&#x ♦ 0 0 0 10 0 | 0 0 0 0 0 0 0 10 0 5 0 | 0 0 0 0 0 0 0 0 0 0 0 2 0 5 0 0 | * * * * * * * 12 *
......... ...xox... .........&#x ♦ 0 0 0 4 1 | 0 0 0 0 0 0 0 2 4 2 0 | 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 | * * * * * * * * 60
© 2004-2025 | top of page |