| Acronym | haxpy |
| Name |
hemihexeractic pyramid, vertex pyramid of laq |
| Circumradius | 1 |
| Coordinates |
|
| Face vector | 33, 272, 880, 1280, 892, 296, 45 |
| Confer |
|
Incidence matrix according to Dynkin symbol
ox3oo3oo *b3oo3oo3oo&#x → height = 1/2 o.3o.3o. *b3o.3o.3o. | 1 * ♦ 32 0 | 240 0 | 640 0 0 | 160 480 0 0 | 60 192 0 0 | 12 32 0 .o3.o3.o *b3.o3.o3.o | * 32 ♦ 1 15 | 15 60 | 60 20 60 | 20 60 15 30 | 15 30 6 6 | 6 6 1 ------------------------+------+--------+---------+-------------+----------------+--------------+-------- oo3oo3oo *b3oo3oo3oo&#x | 1 1 | 32 * ♦ 15 0 | 60 0 0 | 20 60 0 0 | 15 30 0 0 | 6 6 0 .x .. .. .. .. .. | 0 2 | * 240 ♦ 1 8 | 8 4 12 | 4 12 6 8 | 6 8 4 2 | 4 2 1 ------------------------+------+--------+---------+-------------+----------------+--------------+-------- ox .. .. .. .. ..&#x | 1 2 | 2 1 | 240 * ♦ 8 0 0 | 4 12 0 0 | 6 8 0 0 | 4 2 0 .x3.o .. .. .. .. | 0 3 | 0 3 | * 640 | 1 1 3 | 1 3 3 3 | 3 3 3 1 | 3 1 1 ------------------------+------+--------+---------+-------------+----------------+--------------+-------- ox3oo .. .. .. ..&#x ♦ 1 3 | 3 3 | 3 1 | 640 * * | 1 3 0 0 | 3 3 0 0 | 3 1 0 .x3.o3.o .. .. .. ♦ 0 4 | 0 6 | 0 4 | * 160 * | 1 0 3 0 | 3 0 3 0 | 3 0 1 .x3.o .. *b3.o .. .. ♦ 0 4 | 0 6 | 0 4 | * * 480 | 0 1 1 2 | 1 2 2 1 | 2 1 1 ------------------------+------+--------+---------+-------------+----------------+--------------+-------- ox3oo3oo .. .. ..&#x ♦ 1 4 | 4 6 | 6 4 | 4 1 0 | 160 * * * | 3 0 0 0 | 3 0 0 ox3oo .. *b3oo .. ..&#x ♦ 1 4 | 4 6 | 6 4 | 4 0 1 | * 480 * * | 1 2 0 0 | 2 1 0 .x3.o3.o *b3.o .. .. ♦ 0 8 | 0 24 | 0 32 | 0 8 8 | * * 60 * | 1 0 2 0 | 2 0 1 .x3.o .. *b3.o3.o .. ♦ 0 5 | 0 10 | 0 10 | 0 0 5 | * * * 192 | 0 1 1 1 | 1 1 1 ------------------------+------+--------+---------+-------------+----------------+--------------+-------- ox3oo3oo *b3oo .. ..&#x ♦ 1 8 | 8 24 | 24 32 | 32 8 8 | 8 8 1 0 | 60 * * * | 2 0 0 ox3oo .. *b3oo3oo ..&#x ♦ 1 5 | 5 10 | 10 10 | 10 0 5 | 0 5 0 1 | * 192 * * | 1 1 0 .x3.o3.o *b3.o3.o .. ♦ 0 16 | 0 80 | 0 160 | 0 40 80 | 0 0 10 16 | * * 12 * | 1 0 1 .x3.o .. *b3.o3.o3.o ♦ 0 6 | 0 15 | 0 20 | 0 0 15 | 0 0 0 6 | * * * 32 | 0 1 1 ------------------------+------+--------+---------+-------------+----------------+--------------+-------- ox3oo3oo *b3oo3oo ..&#x ♦ 1 16 | 16 80 | 80 160 | 160 40 80 | 40 80 10 16 | 10 16 1 0 | 12 * * ox3oo .. *b3oo3oo3oo&#x ♦ 1 6 | 6 15 | 15 20 | 20 0 15 | 0 15 0 6 | 0 6 0 1 | * 32 * .x3.o3.o *b3.o3.o3.o ♦ 0 32 | 0 240 | 0 640 | 0 160 480 | 0 0 60 192 | 0 0 12 32 | * * 1
o(xo)3o(oo)3o(ox) o(xo)3o(oo)3o(ox)&#x → height(1,2) = height(1,3) = 1/2
height(2,3) = 0
(pt || tegum sum of 2 mutually bigyrated tetdips)
o(..)3o(..)3o(..) o(..)3o(..)3o(..) | 1 * ♦ 32 0 0 | 96 144 0 0 | 64 576 0 0 0 0 | 16 192 144 288 0 0 0 | 24 192 36 0 0 | 12 32 0
.(o.)3.(o.)3.(o.) .(o.)3.(o.)3.(o.) & | * 32 ♦ 1 6 9 | 6 9 6 54 | 6 54 2 24 18 36 | 2 24 18 36 6 30 9 | 6 30 9 6 6 | 6 6 1
------------------------------------------+------+-----------+---------------+-----------------------+--------------------------+-----------------+--------
o(o.)3o(o.)3o(o.) o(o.)3o(o.)3o(o.)&#x & | 1 1 | 32 * * ♦ 6 9 0 0 | 6 54 0 0 0 0 | 2 24 18 36 0 0 0 | 6 30 9 0 0 | 6 6 0
. x. . .. . .. . .. . .. . .. & | 0 2 | * 96 * ♦ 1 0 2 6 | 2 6 1 6 3 6 | 1 6 3 6 3 8 3 | 3 8 3 4 2 | 4 2 1
.(oo)3.(oo)3.(oo) .(oo)3.(oo)3.(oo)&#x | 0 2 | * * 144 ♦ 0 1 0 8 | 0 8 0 4 4 8 | 0 4 4 8 2 8 4 | 2 8 4 4 2 | 4 2 1
------------------------------------------+------+-----------+---------------+-----------------------+--------------------------+-----------------+--------
o(x.) . .. . .. . .. . .. . .. &#x & | 1 2 | 2 1 0 | 96 * * * ♦ 2 6 0 0 0 0 | 1 6 3 6 0 0 0 | 3 8 3 0 0 | 4 2 0
o(oo)3o(oo)3o(oo) o(oo)3o(oo)3o(oo)&#x | 1 2 | 2 0 1 | * 144 * * ♦ 0 8 0 0 0 0 | 0 4 4 8 0 0 0 | 2 8 4 0 0 | 4 2 0
. x. 3. o. . .. . .. . .. . .. & | 0 3 | 0 3 0 | * * 64 * | 1 0 1 3 0 0 | 1 3 0 0 3 3 0 | 3 3 0 3 1 | 3 1 1
.(xo) . .. . .. . .. . .. . .. &#x & | 0 3 | 0 1 2 | * * * 576 | 0 1 0 1 1 2 | 0 1 1 2 1 3 2 | 1 3 2 3 1 | 3 1 1
------------------------------------------+------+-----------+---------------+-----------------------+--------------------------+-----------------+--------
o(x.)3o(o.) . .. . .. . .. . .. &#x & ♦ 1 3 | 3 3 0 | 3 0 1 0 | 64 * * * * * | 1 3 0 0 0 0 0 | 3 3 0 0 0 | 3 1 0
o(xo) . .. . .. . .. . .. . .. &#x & ♦ 1 3 | 3 1 2 | 1 2 0 1 | * 576 * * * * | 0 1 1 2 0 0 0 | 1 3 2 0 0 | 3 1 0
. x. 3. o. 3. o. . .. . .. . .. & ♦ 0 4 | 0 6 0 | 0 0 4 0 | * * 16 * * * | 1 0 0 0 3 0 0 | 3 0 0 3 0 | 3 0 1
.(xo)3.(oo) . .. . .. . .. . .. &#x & ♦ 0 4 | 0 3 3 | 0 0 1 3 | * * * 192 * * | 0 1 0 0 1 2 0 | 1 2 0 2 1 | 2 1 1
.(xo) . .. .(ox) . .. . .. . .. &#x & ♦ 0 4 | 0 2 4 | 0 0 0 4 | * * * * 144 * | 0 0 1 0 1 0 2 | 1 0 2 3 0 | 3 0 1
.(xo) . .. . .. . .. . .. .(ox)&#x & ♦ 0 4 | 0 2 4 | 0 0 0 4 | * * * * * 288 | 0 0 0 1 0 2 1 | 0 2 1 2 1 | 2 1 1
------------------------------------------+------+-----------+---------------+-----------------------+--------------------------+-----------------+--------
o(x.)3o(o.)3o(o.) . .. . .. . .. &#x & ♦ 1 4 | 4 6 0 | 6 0 4 0 | 4 0 1 0 0 0 | 16 * * * * * * | 3 0 0 0 0 | 3 0 0
o(xo)3o(oo) . .. . .. . .. . .. &#x & ♦ 1 4 | 4 3 3 | 3 3 1 3 | 1 3 0 1 0 0 | * 192 * * * * * | 1 2 0 0 0 | 2 1 0
o(xo) . .. o(ox) . .. . .. . .. &#x & ♦ 1 4 | 4 2 4 | 2 4 0 4 | 0 4 0 0 1 0 | * * 144 * * * * | 1 0 2 0 0 | 3 0 0
o(xo) . .. . .. . .. . .. o(ox)&#x & ♦ 1 4 | 4 2 4 | 2 4 0 4 | 0 4 0 0 0 1 | * * * 288 * * * | 0 2 1 0 0 | 2 1 0
.(xo)3.(oo)3.(ox) . .. . .. . .. &#x & ♦ 0 8 | 0 12 12 | 0 0 8 24 | 0 0 2 8 6 0 | * * * * 24 * * | 1 0 0 2 0 | 2 0 1
.(xo)3.(oo) . .. . .. . .. .(ox)&#x & ♦ 0 5 | 0 4 6 | 0 0 1 9 | 0 0 0 2 0 3 | * * * * * 192 * | 0 1 0 1 1 | 1 1 1
.(xo) . .. .(ox) .(xo) . .. .(ox)&#(zx) ♦ 0 8 | 0 8 16 | 0 0 0 32 | 0 0 0 0 8 8 | * * * * * * 36 | 0 0 1 2 0 | 2 0 1
------------------------------------------+------+-----------+---------------+-----------------------+--------------------------+-----------------+--------
o(xo)3o(oo)3o(ox) . .. . .. . .. &#x & ♦ 1 8 | 8 12 12 | 12 12 8 24 | 8 24 2 8 6 0 | 2 8 6 0 1 0 0 | 24 * * * * | 2 0 0
o(xo)3o(oo) . .. . .. . .. o(ox)&#x & ♦ 1 5 | 5 4 6 | 4 6 1 9 | 1 9 0 2 0 3 | 0 2 0 3 0 1 0 | * 192 * * * | 1 1 0
o(xo) . .. o(ox) o(xo) . .. o(ox)&#x ♦ 1 8 | 8 8 16 | 8 16 0 32 | 0 32 0 0 8 8 | 0 0 8 8 0 0 1 | * * 36 * * | 2 0 0
.(xo)3.(oo)3.(ox) .(xo) . .. .(ox)&#(zx) ♦ 0 16 | 0 32 48 | 0 0 16 144 | 0 0 4 32 36 48 | 0 0 0 0 4 16 6 | * * * 12 * | 1 0 1
.(xo)3.(oo) . .. . .. .(oo)3.(ox)&#x & ♦ 0 6 | 0 6 9 | 0 0 2 18 | 0 0 0 6 0 9 | 0 0 0 0 0 6 0 | * * * * 32 | 0 1 1
------------------------------------------+------+-----------+---------------+-----------------------+--------------------------+-----------------+--------
o(xo)3o(oo)3o(ox) o(xo) . .. o(ox)&#x & ♦ 1 16 | 16 32 48 | 32 48 16 144 | 16 144 4 32 36 48 | 4 32 36 48 4 16 6 | 4 16 6 1 0 | 12 * *
o(xo)3o(oo) . .. . .. o(oo)3o(ox)&#x & ♦ 1 6 | 6 6 9 | 6 9 2 18 | 2 18 0 6 0 9 | 0 6 0 9 0 6 0 | 0 6 0 0 1 | * 32 *
.(xo)3.(oo)3.(ox) .(xo)3.(oo)3.(ox)&#(zx) ♦ 0 32 | 0 96 144 | 0 0 64 576 | 0 0 16 192 144 288 | 0 0 0 0 24 192 36 | 0 0 0 12 32 | * * 1
© 2004-2026 | top of page |