Acronym | ico (alt.: jot) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name |
icositetrachoron, 24-cell, xylochoron, octaplex, rectified hexadecachoron, birectified tesseract, hyperdiamond, joined tesseract, trisoctachoron, vertex figure of hext, Voronoi cell of lattice F4, Voronoi cell of lattice D4*, surtegmated tesseract, Gosset polytope 01,1,1, lattice B4 contact polytope (span of its small roots), lattice D4 contact polytope (span of its roots), lattice F4 contact polytope (span of its small roots), equatorial cross-section of hex-first rat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cross sections |
© | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Edge radius | sqrt(3)/2 = 0.866025 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face radius | sqrt(2/3) = 0.816497 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius | 1/sqrt(2) = 0.707107 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex figure |
© | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex layers |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lace hyper city in approx. ASCII-art |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Surface | 8 sqrt(2) = 11.313708 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dual | (selfdual, in different orientation) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dihedral angles | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 24, 96, 96, 24 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
Considering its cells, i.e. the octs, more as trigonal antiprisms, then always 6 build a closed ring each, 4 of witch thus are swirling around each other. This ring of 6 is best seen in the edge-first projection picture at the right.
As can be seen from what is mentioned above (at coordinates or the last of the pictures): the hex-diminished ico is nothing but the tes. Conversely, the 16-diminished ico (corresponding to the vertex directions of tes) is nothing but the hex. In fact, ico is the hull of the 3-hex compound {3,4,3}[3{3,3,4}]2{3,4,3} (sico).
Note that ico can be thought of as the external blend of 24 octpies. This decomposition is described as the degenerate segmentoteron ox3oo4oo3oo&#x.
The desmic configuration of the vertices of the projective compound of 3 tetrahedra (mentioned here) can, by doubling each point into antipodal pairs, transfered into elliptical space of the next dimension, then becoming the points of this icositetrachoron. In fact, the former vertex sets of the 3 tetrahedra here become the vertices of the 3 inscribed hexes. Projective lines of the former setup here would become great circles for sure.
The number of ways to color the icositetrachoron with different colors per cell is 24!/576 = 357 378 279 398 345 917 071 360 000. – This is because the color group is the permutation group of 24 elements and has size 24!, while the order of the pure rotational icositetrachoral group is 576. (The reflectional icositetrachoral group would have twice as many, i.e. 1152 elements.)
"join", as being used in its name "joined tesseract", here simply is meant as the according Conway operator. As such it represents nothing else but the dual of the rectified dual. And indeed, within 4D the rectified dual is the birectified form. And the birectified tes is just ico in its o3x3o4o form. Finally, this ico is also selfdual. I.e. this term just refers explicitely to o3m3o4o.
Its name "trisoctachoron" obviously more applies to its D4 subsymmetry, i.e. o3x3o *b3o.
Being selfdual and considering the second set of coordinates, it is apparent that this solid is nothing but a hyperball wrt. the norm max(|x|+|y|, |x|+|z|, |x|+|w|, |y|+|z|, |y|+|w|, |z|+|w|).
Incidence matrix according to Dynkin symbol
x3o4o3o . . . . | 24 ♦ 8 | 12 | 6 --------+----+----+----+--- x . . . | 2 | 96 | 3 | 3 --------+----+----+----+--- x3o . . | 3 | 3 | 96 | 2 --------+----+----+----+--- x3o4o . ♦ 6 | 12 | 8 | 24 snubbed forms: β3o4o3o
x3o4o3/2o . . . . | 24 ♦ 8 | 12 | 6 ----------+----+----+----+--- x . . . | 2 | 96 | 3 | 3 ----------+----+----+----+--- x3o . . | 3 | 3 | 96 | 2 ----------+----+----+----+--- x3o4o . ♦ 6 | 12 | 8 | 24
x3o4/3o3o . . . . | 24 ♦ 8 | 12 | 6 ----------+----+----+----+--- x . . . | 2 | 96 | 3 | 3 ----------+----+----+----+--- x3o . . | 3 | 3 | 96 | 2 ----------+----+----+----+--- x3o4/3o . ♦ 6 | 12 | 8 | 24
x3o4/3o3/2o . . . . | 24 ♦ 8 | 12 | 6 ------------+----+----+----+--- x . . . | 2 | 96 | 3 | 3 ------------+----+----+----+--- x3o . . | 3 | 3 | 96 | 2 ------------+----+----+----+--- x3o4/3o . ♦ 6 | 12 | 8 | 24
x3/2o4o3o . . . . | 24 ♦ 8 | 12 | 6 ----------+----+----+----+--- x . . . | 2 | 96 | 3 | 3 ----------+----+----+----+--- x3/2o . . | 3 | 3 | 96 | 2 ----------+----+----+----+--- x3/2o4o . ♦ 6 | 12 | 8 | 24
x3/2o4o3/2o . . . . | 24 ♦ 8 | 12 | 6 ------------+----+----+----+--- x . . . | 2 | 96 | 3 | 3 ------------+----+----+----+--- x3/2o . . | 3 | 3 | 96 | 2 ------------+----+----+----+--- x3/2o4o . ♦ 6 | 12 | 8 | 24
x3/2o4/3o3o . . . . | 24 ♦ 8 | 12 | 6 ------------+----+----+----+--- x . . . | 2 | 96 | 3 | 3 ------------+----+----+----+--- x3/2o . . | 3 | 3 | 96 | 2 ------------+----+----+----+--- x3/2o4/3o . ♦ 6 | 12 | 8 | 24
x3/2o4/3o3/2o . . . . | 24 ♦ 8 | 12 | 6 --------------+----+----+----+--- x . . . | 2 | 96 | 3 | 3 --------------+----+----+----+--- x3/2o . . | 3 | 3 | 96 | 2 --------------+----+----+----+--- x3/2o4/3o . ♦ 6 | 12 | 8 | 24
o3x3o4o . . . . | 24 ♦ 8 | 4 8 | 4 2 --------+----+----+-------+----- . x . . | 2 | 96 | 1 2 | 2 1 --------+----+----+-------+----- o3x . . | 3 | 3 | 32 * | 2 0 . x3o . | 3 | 3 | * 64 | 1 1 --------+----+----+-------+----- o3x3o . ♦ 6 | 12 | 4 4 | 16 * . x3o4o ♦ 6 | 12 | 0 8 | * 8 snubbed forms: o3β3o4o
o3x3o4/3o . . . . | 24 ♦ 8 | 4 8 | 4 2 ----------+----+----+-------+----- . x . . | 2 | 96 | 1 2 | 2 1 ----------+----+----+-------+----- o3x . . | 3 | 3 | 32 * | 2 0 . x3o . | 3 | 3 | * 64 | 1 1 ----------+----+----+-------+----- o3x3o . ♦ 6 | 12 | 4 4 | 16 * . x3o4/3o ♦ 6 | 12 | 0 8 | * 8
o3x3/2o4o . . . . | 24 ♦ 8 | 4 8 | 4 2 ----------+----+----+-------+----- . x . . | 2 | 96 | 1 2 | 2 1 ----------+----+----+-------+----- o3x . . | 3 | 3 | 32 * | 2 0 . x3/2o . | 3 | 3 | * 64 | 1 1 ----------+----+----+-------+----- o3x3/2o . ♦ 6 | 12 | 4 4 | 16 * . x3/2o4o ♦ 6 | 12 | 0 8 | * 8
o3x3/2o4/3o . . . . | 24 ♦ 8 | 4 8 | 4 2 ------------+----+----+-------+----- . x . . | 2 | 96 | 1 2 | 2 1 ------------+----+----+-------+----- o3x . . | 3 | 3 | 32 * | 2 0 . x3/2o . | 3 | 3 | * 64 | 1 1 ------------+----+----+-------+----- o3x3/2o . ♦ 6 | 12 | 4 4 | 16 * . x3/2o4/3o ♦ 6 | 12 | 0 8 | * 8
o3/2x3o4o . . . . | 24 ♦ 8 | 4 8 | 4 2 ----------+----+----+-------+----- . x . . | 2 | 96 | 1 2 | 2 1 ----------+----+----+-------+----- o3/2x . . | 3 | 3 | 32 * | 2 0 . x3o . | 3 | 3 | * 64 | 1 1 ----------+----+----+-------+----- o3/2x3o . ♦ 6 | 12 | 4 4 | 16 * . x3o4o ♦ 6 | 12 | 0 8 | * 8
o3/2x3o4/3o . . . . | 24 ♦ 8 | 4 8 | 4 2 ------------+----+----+-------+----- . x . . | 2 | 96 | 1 2 | 2 1 ------------+----+----+-------+----- o3/2x . . | 3 | 3 | 32 * | 2 0 . x3o . | 3 | 3 | * 64 | 1 1 ------------+----+----+-------+----- o3/2x3o . ♦ 6 | 12 | 4 4 | 16 * . x3o4/3o ♦ 6 | 12 | 0 8 | * 8
o3/2x3/2o4o . . . . | 24 ♦ 8 | 4 8 | 4 2 ------------+----+----+-------+----- . x . . | 2 | 96 | 1 2 | 2 1 ------------+----+----+-------+----- o3/2x . . | 3 | 3 | 32 * | 2 0 . x3/2o . | 3 | 3 | * 64 | 1 1 ------------+----+----+-------+----- o3/2x3/2o . ♦ 6 | 12 | 4 4 | 16 * . x3/2o4o ♦ 6 | 12 | 0 8 | * 8
o3/2x3/2o4/3o . . . . | 24 ♦ 8 | 4 8 | 4 2 --------------+----+----+-------+----- . x . . | 2 | 96 | 1 2 | 2 1 --------------+----+----+-------+----- o3/2x . . | 3 | 3 | 32 * | 2 0 . x3/2o . | 3 | 3 | * 64 | 1 1 --------------+----+----+-------+----- o3/2x3/2o . ♦ 6 | 12 | 4 4 | 16 * . x3/2o4/3o ♦ 6 | 12 | 0 8 | * 8
o3x3o *b3o . . . . | 24 ♦ 8 | 4 4 4 | 2 2 2 -----------+----+----+----------+------ . x . . | 2 | 96 | 1 1 1 | 1 1 1 -----------+----+----+----------+------ o3x . . | 3 | 3 | 32 * * | 1 1 0 . x3o . | 3 | 3 | * 32 * | 1 0 1 . x . *b3o | 3 | 3 | * * 32 | 0 1 1 -----------+----+----+----------+------ o3x3o . ♦ 6 | 12 | 4 4 0 | 8 * * o3x . *b3o ♦ 6 | 12 | 4 0 4 | * 8 * . x3o *b3o ♦ 6 | 12 | 0 4 4 | * * 8 snubbed forms: o3β3o *b3o
o3x3o *b3/2o . . . . | 24 ♦ 8 | 4 4 4 | 2 2 2 -------------+----+----+----------+------ . x . . | 2 | 96 | 1 1 1 | 1 1 1 -------------+----+----+----------+------ o3x . . | 3 | 3 | 32 * * | 1 1 0 . x3o . | 3 | 3 | * 32 * | 1 0 1 . x . *b3/2o | 3 | 3 | * * 32 | 0 1 1 -------------+----+----+----------+------ o3x3o . ♦ 6 | 12 | 4 4 0 | 8 * * o3x . *b3/2o ♦ 6 | 12 | 4 0 4 | * 8 * . x3o *b3/2o ♦ 6 | 12 | 0 4 4 | * * 8
o3x3/2o *b3/2o . . . . | 24 ♦ 8 | 4 4 4 | 2 2 2 ---------------+----+----+----------+------ . x . . | 2 | 96 | 1 1 1 | 1 1 1 ---------------+----+----+----------+------ o3x . . | 3 | 3 | 32 * * | 1 1 0 . x3/2o . | 3 | 3 | * 32 * | 1 0 1 . x . *b3/2o | 3 | 3 | * * 32 | 0 1 1 ---------------+----+----+----------+------ o3x3/2o . ♦ 6 | 12 | 4 4 0 | 8 * * o3x . *b3/2o ♦ 6 | 12 | 4 0 4 | * 8 * . x3/2o *b3/2o ♦ 6 | 12 | 0 4 4 | * * 8
o3/2x3/2o *b3/2o . . . . | 24 ♦ 8 | 4 4 4 | 2 2 2 -----------------+----+----+----------+------ . x . . | 2 | 96 | 1 1 1 | 1 1 1 -----------------+----+----+----------+------ o3/2x . . | 3 | 3 | 32 * * | 1 1 0 . x3/2o . | 3 | 3 | * 32 * | 1 0 1 . x . *b3/2o | 3 | 3 | * * 32 | 0 1 1 -----------------+----+----+----------+------ o3/2x3/2o . ♦ 6 | 12 | 4 4 0 | 8 * * o3/2x . *b3/2o ♦ 6 | 12 | 4 0 4 | * 8 * . x3/2o *b3/2o ♦ 6 | 12 | 0 4 4 | * * 8
xox3oxo4ooo&#xt → both heights = 1/sqrt(2) = 0.707107 (oct || pseudo co || oct) o..3o..4o.. | 6 * * ♦ 4 4 0 0 0 | 4 4 4 0 0 0 0 | 1 4 1 0 0 .o.3.o.4.o. | * 12 * ♦ 0 2 4 2 0 | 0 1 4 2 4 1 0 | 0 2 2 2 0 ..o3..o4..o | * * 6 ♦ 0 0 0 4 4 | 0 0 0 0 4 4 4 | 0 0 1 4 1 ----------------+--------+----------------+-------------------+---------- x.. ... ... | 2 0 0 | 12 * * * * | 2 1 0 0 0 0 0 | 1 2 0 0 0 oo.3oo.4oo.&#x | 1 1 0 | * 24 * * * | 0 1 2 0 0 0 0 | 0 2 1 0 0 ... .x. ... | 0 2 0 | * * 24 * * | 0 0 1 1 1 0 0 | 0 1 1 1 0 .oo3.oo4.oo&#x | 0 1 1 | * * * 24 * | 0 0 0 0 2 1 0 | 0 0 1 2 0 ..x ... ... | 0 0 2 | * * * * 12 | 0 0 0 0 0 1 2 | 0 0 0 2 1 ----------------+--------+----------------+-------------------+---------- x..3o.. ... | 3 0 0 | 3 0 0 0 0 | 8 * * * * * * | 1 1 0 0 0 xo. ... ...&#x | 2 1 0 | 1 2 0 0 0 | * 12 * * * * * | 0 2 0 0 0 ... ox. ...&#x | 1 2 0 | 0 2 1 0 0 | * * 24 * * * * | 0 1 1 0 0 .o.3.x. ... | 0 3 0 | 0 0 3 0 0 | * * * 8 * * * | 0 1 0 1 0 ... .xo ...&#x | 0 2 1 | 0 0 1 2 0 | * * * * 24 * * | 0 0 1 1 0 .ox ... ...&#x | 0 1 2 | 0 0 0 2 1 | * * * * * 12 * | 0 0 0 2 0 ..x3..o ... | 0 0 3 | 0 0 0 0 3 | * * * * * * 8 | 0 0 0 1 1 ----------------+--------+----------------+-------------------+---------- x..3o..4o.. ♦ 6 0 0 | 12 0 0 0 0 | 8 0 0 0 0 0 0 | 1 * * * * xo.3ox. ...&#x ♦ 3 3 0 | 3 6 3 0 0 | 1 3 3 1 0 0 0 | * 8 * * * ... oxo4ooo&#xt ♦ 1 4 1 | 0 4 4 4 0 | 0 0 4 0 4 0 0 | * * 6 * * .ox3.xo ...&#x ♦ 0 3 3 | 0 0 3 6 3 | 0 0 0 1 3 3 1 | * * * 8 * ..x3..o4..o ♦ 0 0 6 | 0 0 0 0 12 | 0 0 0 0 0 0 8 | * * * * 1
or o..3o..4o.. & | 12 * ♦ 4 4 0 | 4 4 4 0 | 1 4 1 .o.3.o.4.o. | * 12 ♦ 0 4 4 | 0 2 8 2 | 0 4 2 ------------------+-------+----------+------------+------- x.. ... ... & | 2 0 | 24 * * | 2 1 0 0 | 1 2 0 oo.3oo.4oo.&#x & | 1 1 | * 48 * | 0 1 2 0 | 0 2 1 ... .x. ... | 0 2 | * * 24 | 0 0 2 1 | 0 2 1 ------------------+-------+----------+------------+------- x..3o.. ... & | 3 0 | 3 0 0 | 16 * * * | 1 1 0 xo. ... ...&#x & | 2 1 | 1 2 0 | * 24 * * | 0 2 0 ... ox. ...&#x & | 1 2 | 0 2 1 | * * 48 * | 0 1 1 .o.3.x. ... | 0 3 | 0 0 3 | * * * 8 | 0 2 0 ------------------+-------+----------+------------+------- x..3o..4o.. & ♦ 6 0 | 12 0 0 | 8 0 0 0 | 2 * * xo.3ox. ...&#x & ♦ 3 3 | 3 6 3 | 1 3 3 1 | * 16 * ... oxo4ooo&#xt ♦ 2 4 | 0 8 4 | 0 0 8 0 | * * 6
oxo3xox3oxo&#xt → both heights = 1/sqrt(2) = 0.707107 (oct || pseudo co || oct) o..3o..3o.. | 6 * * ♦ 4 4 0 0 0 0 | 2 2 2 4 2 0 0 0 0 0 0 0 | 1 2 2 1 0 0 0 .o.3.o.3.o. | * 12 * ♦ 0 2 2 2 2 0 | 0 0 2 1 2 1 1 2 1 2 0 0 | 0 1 1 2 1 1 0 ..o3..o3..o | * * 6 ♦ 0 0 0 0 4 4 | 0 0 0 0 0 0 0 2 4 2 2 2 | 0 0 0 1 2 2 1 ----------------+--------+-------------------+-------------------------------+-------------- ... x.. ... | 2 0 0 | 12 * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 oo. oo. oo.&#x | 1 1 0 | * 24 * * * * | 0 0 1 1 1 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 .x. ... ... | 0 2 0 | * * 12 * * * | 0 0 1 0 0 1 0 1 0 0 0 0 | 0 1 0 1 1 0 0 ... ... .x. | 0 2 0 | * * * 12 * * | 0 0 0 0 1 0 1 1 0 0 0 0 | 0 0 1 1 0 1 0 .oo .oo .oo&#x | 0 1 1 | * * * * 24 * | 0 0 0 0 0 0 0 1 1 1 0 0 | 0 0 0 1 1 1 0 ... ..x ... | 0 0 2 | * * * * * 12 | 0 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 0 1 1 1 ----------------+--------+-------------------+-------------------------------+-------------- o..3x.. ... | 3 0 0 | 3 0 0 0 0 0 | 4 * * * * * * * * * * * | 1 1 0 0 0 0 0 ... x..3o.. | 3 0 0 | 3 0 0 0 0 0 | * 4 * * * * * * * * * * | 1 0 1 0 0 0 0 ox. ... ...&#x | 1 2 0 | 0 2 1 0 0 0 | * * 12 * * * * * * * * * | 0 1 0 1 0 0 0 ... xo. ...&#x | 2 1 0 | 1 2 0 0 0 0 | * * * 12 * * * * * * * * | 0 1 1 0 0 0 0 ... ... ox.&#x | 1 2 0 | 0 2 0 1 0 0 | * * * * 12 * * * * * * * | 0 0 1 1 0 0 0 .x.3.o. ... | 0 3 0 | 0 0 3 0 0 0 | * * * * * 4 * * * * * * | 0 1 0 0 1 0 0 ... .o.3.x. | 0 3 0 | 0 0 0 3 0 0 | * * * * * * 4 * * * * * | 0 0 1 0 0 1 0 .xo ... ...&#x | 0 2 1 | 0 0 1 0 2 0 | * * * * * * * 12 * * * * | 0 0 0 1 1 0 0 ... .ox ...&#x | 0 1 2 | 0 0 0 0 2 1 | * * * * * * * * 12 * * * | 0 0 0 0 1 1 0 ... ... .xo&#x | 0 2 1 | 0 0 0 1 2 0 | * * * * * * * * * 12 * * | 0 0 0 1 0 1 0 ..o3..x ... | 0 0 3 | 0 0 0 0 0 3 | * * * * * * * * * * 4 * | 0 0 0 0 1 0 1 ... ..x3..o | 0 0 3 | 0 0 0 0 0 3 | * * * * * * * * * * * 4 | 0 0 0 0 0 1 1 ----------------+--------+-------------------+-------------------------------+-------------- o..3x..3o.. ♦ 6 0 0 | 12 0 0 0 0 0 | 4 4 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * ox.3xo. ...&#x ♦ 3 3 0 | 3 6 3 0 0 0 | 1 0 3 3 0 1 0 0 0 0 0 0 | * 4 * * * * * ... xo.3ox.&#x ♦ 3 3 0 | 3 6 0 3 0 0 | 0 1 0 3 3 0 1 0 0 0 0 0 | * * 4 * * * * oxo ... oxo&#xt ♦ 1 4 1 | 0 4 2 2 4 0 | 0 0 2 0 2 0 0 2 0 2 0 0 | * * * 6 * * * .xo3.ox ...&#x ♦ 0 3 3 | 0 0 3 0 6 3 | 0 0 0 0 0 1 0 3 3 0 1 0 | * * * * 4 * * ... .ox3.xo&#x ♦ 0 3 3 | 0 0 0 3 6 3 | 0 0 0 0 0 0 1 0 3 3 0 1 | * * * * * 4 * ..o3..x3..o ♦ 0 0 6 | 0 0 0 0 0 12 | 0 0 0 0 0 0 0 0 0 0 4 4 | * * * * * * 1
or o..3o..3o.. & | 12 * ♦ 4 4 0 0 | 2 2 2 4 2 0 0 | 1 2 2 1 .o.3.o.3.o. | * 12 ♦ 0 4 2 2 | 0 0 4 2 4 1 1 | 0 2 2 2 ------------------+-------+-------------+------------------+-------- ... x.. ... & | 2 0 | 24 * * * | 1 1 0 1 0 0 0 | 1 1 1 0 oo. oo. oo.&#x & | 1 1 | * 48 * * | 0 0 1 1 1 0 0 | 0 1 1 1 .x. ... ... | 0 2 | * * 12 * | 0 0 2 0 0 1 0 | 0 2 0 1 ... ... .x. | 0 2 | * * * 12 | 0 0 0 0 2 0 1 | 0 0 2 1 ------------------+-------+-------------+------------------+-------- o..3x.. ... & | 3 0 | 3 0 0 0 | 8 * * * * * * | 1 1 0 0 ... x..3o.. & | 3 0 | 3 0 0 0 | * 8 * * * * * | 1 0 1 0 ox. ... ...&#x & | 1 2 | 0 2 1 0 | * * 24 * * * * | 0 1 0 1 ... xo. ...&#x & | 2 1 | 1 2 0 0 | * * * 24 * * * | 0 1 1 0 ... ... ox.&#x & | 1 2 | 0 2 0 1 | * * * * 24 * * | 0 0 1 1 .x.3.o. ... | 0 3 | 0 0 3 0 | * * * * * 4 * | 0 2 0 0 ... .o.3.x. | 0 3 | 0 0 0 3 | * * * * * * 4 | 0 0 2 0 ------------------+-------+-------------+------------------+-------- o..3x..3o.. & ♦ 6 0 | 12 0 0 0 | 4 4 0 0 0 0 0 | 2 * * * ox.3xo. ...&#x & ♦ 3 3 | 3 6 3 0 | 1 0 3 3 0 1 0 | * 8 * * ... xo.3ox.&#x & ♦ 3 3 | 3 6 0 3 | 0 1 0 3 3 0 1 | * * 8 * oxo ... oxo&#xt ♦ 2 4 | 0 8 2 2 | 0 0 4 0 4 0 0 | * * * 6
ooqoo3ooooo4oxoxo&#xt → all heights = 1/2 (pt || pseudo cube || pseudo q-oct || pseudo cube || pt) o....3o....4o.... | 1 * * * * ♦ 8 0 0 0 0 0 0 | 12 0 0 0 0 | 6 0 0 .o...3.o...4.o... | * 8 * * * ♦ 1 3 3 1 0 0 0 | 3 6 3 0 0 | 3 3 0 ..o..3..o..4..o.. | * * 6 * * ♦ 0 0 4 0 4 0 0 | 0 4 4 4 0 | 1 4 1 ...o.3...o.4...o. | * * * 8 * ♦ 0 0 0 1 3 3 1 | 0 0 3 6 3 | 0 3 3 ....o3....o4....o | * * * * 1 ♦ 0 0 0 0 0 0 8 | 0 0 0 0 12 | 0 0 6 ----------------------+-----------+-------------------+----------------+------- oo...3oo...4oo...&#x | 1 1 0 0 0 | 8 * * * * * * | 3 0 0 0 0 | 3 0 0 ..... ..... .x... | 0 2 0 0 0 | * 12 * * * * * | 1 2 0 0 0 | 2 1 0 .oo..3.oo..4.oo..&#x | 0 1 1 0 0 | * * 24 * * * * | 0 2 1 0 0 | 1 2 0 .o.o.3.o.o.4.o.o.&#x | 0 1 0 1 0 | * * * 8 * * * | 0 0 3 0 0 | 0 3 0 ..oo.3..oo.4..oo.&#x | 0 0 1 1 0 | * * * * 24 * * | 0 0 1 2 0 | 0 2 1 ..... ..... ...x. | 0 0 0 2 0 | * * * * * 12 * | 0 0 0 2 1 | 0 1 2 ...oo3...oo4...oo&#x | 0 0 0 1 1 | * * * * * * 8 | 0 0 0 0 3 | 0 0 3 ----------------------+-----------+-------------------+----------------+------- ..... ..... ox...&#x | 1 2 0 0 0 | 2 1 0 0 0 0 0 | 12 * * * * | 2 0 0 ..... ..... .xo..&#x | 0 2 1 0 0 | 0 1 2 0 0 0 0 | * 24 * * * | 1 1 0 .ooo.3.ooo.4.ooo.&#xt | 0 1 1 1 0 | 0 0 1 1 1 0 0 | * * 24 * * | 0 2 0 ..... ..... ..ox.&#x | 0 0 1 2 0 | 0 0 0 0 2 1 0 | * * * 24 * | 0 1 1 ..... ..... ...xo&#x | 0 0 0 2 1 | 0 0 0 0 0 1 2 | * * * * 12 | 0 0 2 ----------------------+-----------+-------------------+----------------+------- ..... ooo..4oxo..&#xt ♦ 1 4 1 0 0 | 4 4 4 0 0 0 0 | 4 4 0 0 0 | 6 * * .oqo. ..... .xox.&#xt ♦ 0 2 2 2 0 | 0 1 4 2 4 1 0 | 0 2 4 2 0 | * 12 * ..... ..ooo4..oxo&#xt ♦ 0 0 1 4 1 | 0 0 0 0 4 4 4 | 0 0 0 4 4 | * * 6
or o....3o....4o.... & | 2 * * ♦ 8 0 0 0 | 12 0 0 | 6 0 .o...3.o...4.o... & | * 16 * ♦ 1 3 3 1 | 3 6 3 | 3 3 ..o..3..o..4..o.. | * * 6 ♦ 0 0 8 0 | 0 8 4 | 2 4 -------------------------+--------+------------+----------+------ oo...3oo...4oo...&#x & | 1 1 0 | 16 * * * | 3 0 0 | 3 0 ..... ..... .x... & | 0 2 0 | * 24 * * | 1 2 0 | 2 1 .oo..3.oo..4.oo..&#x & | 0 1 1 | * * 48 * | 0 2 1 | 1 2 .o.o.3.o.o.4.o.o.&#x | 0 2 0 | * * * 8 | 0 0 3 | 0 3 -------------------------+--------+------------+----------+------ ..... ..... ox...&#x & | 1 2 0 | 2 1 0 0 | 24 * * | 2 0 ..... ..... .xo..&#x & | 0 2 1 | 0 1 2 0 | * 48 * | 1 1 .ooo.3.ooo.4.ooo.&#xt | 0 2 1 | 0 0 2 1 | * * 24 | 0 2 -------------------------+--------+------------+----------+------ ..... ooo..4oxo..&#xt & ♦ 1 4 1 | 4 4 4 0 | 4 4 0 | 12 * .oqo. ..... .xox.&#xt ♦ 0 4 2 | 0 2 8 2 | 0 4 4 | * 12
ox(uoo)xo ox(ouo)xo ox(oou)xo&#xt → all non-zero heights = 1/2 (pt || pseudo cube || pseudo q-oct || pseudo cube || pt) o.(...).. o.(...).. o.(...).. & | 2 * * ♦ 8 0 0 0 | 12 0 0 | 6 0 .o(...).. .o(...).. .o(...).. & | * 16 * ♦ 1 3 3 1 | 3 6 3 | 3 3 ..(o..).. ..(o..).. ..(o..).. & | * * 6 ♦ 0 0 8 0 | 0 8 4 | 2 4 ------------------------------------+--------+------------+----------+------ oo(...).. oo(...).. oo(...)..&#x & | 1 1 0 | 16 * * * | 3 0 0 | 3 0 .x(...).. ..(...).. ..(...).. & | 0 2 0 | * 24 * * | 1 2 0 | 2 1 .o(o..).. .o(o..).. .o(o..)..&#x & | 0 1 1 | * * 48 * | 0 2 1 | 1 2 .o(...)o. .o(...)o. .o(...)o.&#x | 0 2 0 | * * * 8 | 0 0 3 | 0 3 ------------------------------------+--------+------------+----------+------ ox(...).. ..(...).. ..(...)..&#x & | 1 2 0 | 2 1 0 0 | 24 * * | 2 0 .x(.o.).. ..(...).. ..(...)..&#x & | 0 2 1 | 0 1 2 0 | * 48 * | 1 1 .o(o..)o. .o(o..)o. .o(o..)o.&#x & | 0 2 1 | 0 0 2 1 | * * 24 | 0 2 ------------------------------------+--------+------------+----------+------ ox(.o.).. ..(...).. ox(.o.)..&#xt & ♦ 1 4 1 | 4 4 4 0 | 4 4 0 | 12 * .x(.oo)x. ..(...).. ..(...)..&#xr & ♦ 0 4 2 | 0 2 8 2 | 0 4 4 | * 12
o3m3o4o = qo3oo3oo4ox&#zx → height = 0 (tegum sum of q-hex and tes) o.3o.3o.4o. | 8 * ♦ 8 0 | 12 | 6 .o3.o3.o4.o | * 16 ♦ 4 4 | 12 | 6 ----------------+------+-------+----+--- oo3oo3oo4oo&#x | 1 1 | 64 * | 3 | 3 .. .. .. .x | 0 2 | * 32 | 3 | 3 ----------------+------+-------+----+--- .. .. .. ox&#x | 1 2 | 2 1 | 96 | 2 ----------------+------+-------+----+--- qo .. oo4ox&#zx ♦ 2 4 | 8 4 | 8 | 24
qoo3ooo3oqo *b3ooq&#zx → height = 0 (tegum sum of 3 mutually gyrated q-hexs) o..3o..3o.. *b3o.. | 8 * * ♦ 4 4 0 | 12 | 6 .o.3.o.3.o. *b3.o. | * 8 * ♦ 4 0 4 | 12 | 6 ..o3..o3..o *b3..o | * * 8 ♦ 0 4 4 | 12 | 6 -----------------------+-------+----------+----+--- oo.3oo.3oo. *b3oo.&#x | 1 1 0 | 32 * * | 3 | 3 o.o3o.o3o.o *b3o.o&#x | 1 0 1 | * 32 * | 3 | 3 .oo3.oo3.oo *b3.oo&#x | 0 1 1 | * * 32 | 3 | 3 -----------------------+-------+----------+----+--- ooo3ooo3ooo *b3ooo&#x | 1 1 1 | 1 1 1 | 96 | 2 -----------------------+-------+----------+----+--- qoo ... oqo ooq&#zx ♦ 2 2 2 | 4 4 4 | 8 | 24
qo xo3ox4oo&#zx → height = 0 (tegum sum of (q,x)-ope and para co) o. o.3o.4o. & | 12 * ♦ 4 4 0 | 4 4 4 0 | 1 1 4 .o .o3.o4.o | * 12 ♦ 0 4 4 | 0 2 8 2 | 2 0 4 ------------------+-------+----------+------------+------- .. x. .. .. & | 2 0 | 24 * * | 2 1 0 0 | 0 1 2 oo oo3oo4oo&#x & | 1 1 | * 48 * | 0 1 2 0 | 1 0 2 .. .. .x .. | 0 2 | * * 24 | 0 0 2 1 | 1 0 2 ------------------+-------+----------+------------+------- .. x.3o. .. & | 3 0 | 3 0 0 | 16 * * * | 0 1 1 .. xo .. ..&#x & | 2 1 | 1 2 0 | * 24 * * | 0 0 2 .. .. ox ..&#x & | 1 2 | 0 2 1 | * * 48 * | 1 0 1 .. .o3.x .. | 0 3 | 0 0 3 | * * * 8 | 0 0 2 ------------------+-------+----------+------------+------- qo .. ox4oo&#zx ♦ 2 4 | 0 8 4 | 0 0 8 0 | 6 * * .. x.3o.4o. & ♦ 6 0 | 12 0 0 | 8 0 0 0 | * 2 * .. xo3ox ..&#x & ♦ 3 3 | 3 6 3 | 1 3 3 1 | * * 16
oxo4ooq oxo4qoo&#zx → all heights = 0 - except not existing lacing(1,3) (tegum sum of 2 perpendicular q-{4}'s and a tes) o..4o.. o..4o.. & | 8 * ♦ 8 0 | 8 4 | 4 2 .o.4.o. .o.4.o. | * 16 ♦ 4 4 | 8 4 | 4 2 ----------------------+------+-------+-------+----- oo.4oo. oo.4oo.&#x & | 1 1 | 64 * | 2 1 | 2 1 .x. ... ... ... & | 0 2 | * 32 | 2 1 | 2 1 ----------------------+------+-------+-------+----- ox. ... ... ...&#x & | 1 2 | 2 1 | 64 * | 1 1 .xo ... ... ...&#x & | 1 2 | 2 1 | * 32 | 2 0 ----------------------+------+-------+-------+----- oxo ... oxo ...&#xt ♦ 2 4 | 8 4 | 4 4 | 16 * ox.4oo. ... qo.&#zx & ♦ 2 4 | 8 4 | 8 0 | * 8
xxo3xox oqo3ooq&#zx → all heights = 0 (tegum sum of unit-{6} and 2 bidual (x,q)-triddips) o..3o.. o..3o.. | 6 * * ♦ 1 1 3 3 0 0 0 | 3 3 6 0 0 0 0 | 3 3 0 .o.3.o. .o.3.o. | * 9 * ♦ 0 0 2 0 2 4 0 | 1 0 4 1 4 2 0 | 2 2 2 ..o3..o ..o3..o | * * 9 ♦ 0 0 0 2 0 4 2 | 0 1 4 0 2 4 1 | 2 2 2 --------------------+-------+------------------+------------------+------ x.. ... ... ... | 2 0 0 | 3 * * * * * * | 0 3 0 0 0 0 0 | 3 0 0 ... x.. ... ... | 2 0 0 | * 3 * * * * * | 3 0 0 0 0 0 0 | 0 3 0 oo.3oo. oo.3oo.&#x | 1 1 0 | * * 18 * * * * | 1 0 2 0 0 0 0 | 1 2 0 o.o3o.o o.o3o.o&#x | 1 0 1 | * * * 18 * * * | 0 1 2 0 0 0 0 | 2 1 0 .x. ... ... ... | 0 2 0 | * * * * 9 * * | 0 0 0 1 2 0 0 | 1 0 2 .oo3.oo .oo3.oo&#x | 0 1 1 | * * * * * 36 * | 0 0 1 0 1 1 0 | 1 1 1 ... ..x ... ... | 0 0 2 | * * * * * * 9 | 0 0 0 0 0 2 1 | 0 1 2 --------------------+-------+------------------+------------------+------ ... xo. ... ...&#x | 2 1 0 | 0 1 2 0 0 0 0 | 9 * * * * * * | 0 2 0 x.o ... ... ...&#x | 2 0 1 | 1 0 0 2 0 0 0 | * 9 * * * * * | 2 0 0 ooo3ooo ooo3ooo&#x | 1 1 1 | 0 0 1 1 0 1 0 | * * 36 * * * * | 1 1 0 .x.3.o. ... ... | 0 3 0 | 0 0 0 0 3 0 0 | * * * 3 * * * | 0 0 2 .xo ... ... ...&#x | 0 2 1 | 0 0 0 0 1 2 0 | * * * * 18 * * | 1 0 1 ... .ox ... ...&#x | 0 1 2 | 0 0 0 0 0 2 1 | * * * * * 18 * | 0 1 1 ..o3..x ... ... | 0 0 3 | 0 0 0 0 0 0 3 | * * * * * * 3 | 0 0 2 --------------------+-------+------------------+------------------+------ xxo ... ... ooq&#zx ♦ 2 2 2 | 1 0 2 4 1 4 0 | 0 2 4 0 2 0 0 | 9 * * ... xox oqo ...&#zx ♦ 2 2 2 | 0 1 4 2 0 4 1 | 2 0 4 0 0 2 0 | * 9 * .xo3.ox ... ...&#x ♦ 0 3 3 | 0 0 0 0 3 6 3 | 0 0 0 1 3 3 1 | * * 6
or o..3o.. o..3o.. | 6 * ♦ 2 6 0 0 | 6 6 0 0 | 6 0 .o.3.o. .o.3.o. & | * 18 ♦ 0 2 2 4 | 1 4 1 6 | 4 2 ----------------------+------+------------+------------+----- x.. ... ... ... & | 2 0 | 6 * * * | 3 0 0 0 | 3 0 oo.3oo. oo.3oo.&#x & | 1 1 | * 36 * * | 1 2 0 0 | 3 0 .x. ... ... ... & | 0 2 | * * 18 * | 0 0 1 2 | 1 2 .oo3.oo .oo3.oo&#x | 0 2 | * * * 36 | 0 1 0 2 | 2 1 ----------------------+------+------------+------------+----- ... xo. ... ...&#x & | 2 1 | 1 2 0 0 | 18 * * * | 2 0 ooo3ooo ooo3ooo&#x | 1 2 | 0 2 0 1 | * 36 * * | 2 0 .x.3.o. ... ... & | 0 3 | 0 0 3 0 | * * 6 * | 0 2 .xo ... ... ...&#x & | 0 3 | 0 0 1 2 | * * * 36 | 1 1 ----------------------+------+------------+------------+----- xxo ... ... ooq&#zx & ♦ 2 4 | 1 6 1 4 | 2 4 0 2 | 18 * .xo3.ox ... ...&#x ♦ 0 6 | 0 0 6 6 | 0 0 2 6 | * 6
uooox ouoox oouox oooux&#zx → all existing heights = 0 (tegum sum of 4 pairwise perpendicular u-lines and a tes) o.... o.... o.... o.... | 2 * * * * ♦ 8 0 0 0 0 0 0 0 | 4 4 4 0 0 0 0 0 0 0 0 0 | 2 2 2 0 0 0 .o... .o... .o... .o... | * 2 * * * ♦ 0 8 0 0 0 0 0 0 | 0 0 0 4 4 4 0 0 0 0 0 0 | 2 0 0 2 2 0 ..o.. ..o.. ..o.. ..o.. | * * 2 * * ♦ 0 0 8 0 0 0 0 0 | 0 0 0 0 0 0 4 4 4 0 0 0 | 0 2 0 2 0 2 ...o. ...o. ...o. ...o. | * * * 2 * ♦ 0 0 0 8 0 0 0 0 | 0 0 0 0 0 0 0 0 0 4 4 4 | 0 0 2 0 2 2 ....o ....o ....o ....o | * * * * 16 ♦ 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 ----------------------------+------------+---------------------+-------------------------+------------ o...o o...o o...o o...o&#x | 1 0 0 0 1 | 16 * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 .o..o .o..o .o..o .o..o&#x | 0 1 0 0 1 | * 16 * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 | 1 0 0 1 1 0 ..o.o ..o.o ..o.o ..o.o&#x | 0 0 1 0 1 | * * 16 * * * * * | 0 0 0 0 0 0 1 1 1 0 0 0 | 0 1 0 1 0 1 ...oo ...oo ...oo ...oo&#x | 0 0 0 1 1 | * * * 16 * * * * | 0 0 0 0 0 0 0 0 0 1 1 1 | 0 0 1 0 1 1 ....x ..... ..... ..... | 0 0 0 0 2 | * * * * 8 * * * | 0 0 0 1 0 0 1 0 0 1 0 0 | 0 0 0 1 1 1 ..... ....x ..... ..... | 0 0 0 0 2 | * * * * * 8 * * | 1 0 0 0 0 0 0 1 0 0 1 0 | 0 1 1 0 0 1 ..... ..... ....x ..... | 0 0 0 0 2 | * * * * * * 8 * | 0 1 0 0 1 0 0 0 0 0 0 1 | 1 0 1 0 1 0 ..... ..... ..... ....x | 0 0 0 0 2 | * * * * * * * 8 | 0 0 1 0 0 1 0 0 1 0 0 0 | 1 1 0 1 0 0 ----------------------------+------------+---------------------+-------------------------+------------ ..... o...x ..... .....&#x | 1 0 0 0 2 | 2 0 0 0 0 1 0 0 | 8 * * * * * * * * * * * | 0 1 1 0 0 0 ..... ..... o...x .....&#x | 1 0 0 0 2 | 2 0 0 0 0 0 1 0 | * 8 * * * * * * * * * * | 1 0 1 0 0 0 ..... ..... ..... o...x&#x | 1 0 0 0 2 | 2 0 0 0 0 0 0 1 | * * 8 * * * * * * * * * | 1 1 0 0 0 0 .o..x ..... ..... .....&#x | 0 1 0 0 2 | 0 2 0 0 1 0 0 0 | * * * 8 * * * * * * * * | 0 0 0 1 1 0 ..... ..... .o..x .....&#x | 0 1 0 0 2 | 0 2 0 0 0 0 1 0 | * * * * 8 * * * * * * * | 1 0 0 0 1 0 ..... ..... ..... .o..x&#x | 0 1 0 0 2 | 0 2 0 0 0 0 0 1 | * * * * * 8 * * * * * * | 1 0 0 1 0 0 ..o.x ..... ..... .....&#x | 0 0 1 0 2 | 0 0 2 0 1 0 0 0 | * * * * * * 8 * * * * * | 0 0 0 1 0 1 ..... ..o.x ..... .....&#x | 0 0 1 0 2 | 0 0 2 0 0 1 0 0 | * * * * * * * 8 * * * * | 0 1 0 0 0 1 ..... ..... ..... ..o.x&#x | 0 0 1 0 2 | 0 0 2 0 0 0 0 1 | * * * * * * * * 8 * * * | 0 1 0 1 0 0 ...ox ..... ..... .....&#x | 0 0 0 1 2 | 0 0 0 2 1 0 0 0 | * * * * * * * * * 8 * * | 0 0 0 0 1 1 ..... ...ox ..... .....&#x | 0 0 0 1 2 | 0 0 0 2 0 1 0 0 | * * * * * * * * * * 8 * | 0 0 1 0 0 1 ..... ..... ...ox .....&#x | 0 0 0 1 2 | 0 0 0 2 0 0 1 0 | * * * * * * * * * * * 8 | 0 0 1 0 1 0 ----------------------------+------------+---------------------+-------------------------+------------ ..... ..... oo..x oo..x&#xt ♦ 1 1 0 0 4 | 4 4 0 0 0 0 2 2 | 0 2 2 0 2 2 0 0 0 0 0 0 | 4 * * * * * (tower: a-e-b) ..... o.o.x ..... o.o.x&#xt ♦ 1 0 1 0 4 | 4 0 4 0 0 2 0 2 | 2 0 2 0 0 0 0 2 2 0 0 0 | * 4 * * * * (tower: a-e-c) ..... o..ox o..ox .....&#xt ♦ 1 0 0 1 4 | 4 0 0 4 0 2 2 0 | 2 2 0 0 0 0 0 0 0 0 2 2 | * * 4 * * * (tower: a-e-d) .oo.x ..... ..... .oo.x&#xt ♦ 0 1 1 0 4 | 0 4 4 0 2 0 0 2 | 0 0 0 2 0 2 2 0 2 0 0 0 | * * * 4 * * (tower: b-e-c) .o.ox ..... .o.ox .....&#xt ♦ 0 1 0 1 4 | 0 4 0 4 2 0 2 0 | 0 0 0 2 2 0 0 0 0 2 0 2 | * * * * 4 * (tower: b-e-d) ..oox ..oox ..... .....&#xt ♦ 0 0 1 1 4 | 0 0 4 4 2 2 0 0 | 0 0 0 0 0 0 2 2 0 2 2 0 | * * * * * 4 (tower: c-e-d)
(qo)(qo)(qo) (ox)(xo)(ox)4(oo)(oq)(oo)&#xt → both heights = 1/sqrt(2) = 0.707107 (oct || pseudo co || oct) (o.)(..)(..) (o.)(..)(..)4(o.)(..)(..) & | 4 * * * ♦ 4 4 0 0 0 0 0 | 4 4 4 0 0 0 | 1 1 4 0 (.o)(..)(..) (.o)(..)(..)4(.o)(..)(..) & | * 8 * * ♦ 2 0 2 2 2 0 0 | 4 0 2 2 4 0 | 1 0 4 1 (..)(o.)(..) (..)(o.)(..)4(..)(o.)(..) | * * 8 * ♦ 0 2 0 2 0 2 2 | 0 4 2 0 4 2 | 0 1 4 1 (..)(.o)(..) (..)(.o)(..)4(..)(.o)(..) | * * * 4 ♦ 0 0 0 0 4 0 4 | 0 0 0 2 8 2 | 0 0 4 2 ---------------------------------------------+---------+--------------------+-----------------+--------- (oo)(..)(..) (oo)(..)(..)4(oo)(..)(..)&#x & | 1 1 0 0 | 16 * * * * * * | 2 0 1 0 0 0 | 1 0 2 0 (o.)(o.)(..) (o.)(o.)(..)4(o.)(o.)(..)&#x & | 1 0 1 0 | * 16 * * * * * | 0 2 1 0 0 0 | 0 1 2 0 (..)(..)(..) (.x)(..)(..) (..)(..)(..) | 0 2 0 0 | * * 8 * * * * | 2 0 0 1 0 0 | 1 0 2 0 (.o)(o.)(..) (.o)(o.)(..)4(.o)(o.)(..)&#x & | 0 1 1 0 | * * * 16 * * * | 0 0 1 0 2 0 | 0 0 2 1 (.o)(.o)(..) (.o)(.o)(..)4(.o)(.o)(..)&#x & | 0 1 0 1 | * * * * 16 * * | 0 0 0 1 2 0 | 0 0 2 1 (..)(..)(..) (..)(x.)(..) (..)(..)(..) | 0 0 2 0 | * * * * * 8 * | 0 2 0 0 0 1 | 0 1 2 0 (..)(oo)(..) (..)(oo)(..)4(..)(oo)(..)&#x | 0 0 1 1 | * * * * * * 16 | 0 0 0 0 2 1 | 0 0 2 1 ---------------------------------------------+---------+--------------------+-----------------+--------- (..)(..)(..) (ox)(..)(..) (..)(..)(..)&#x & | 1 2 0 0 | 2 0 1 0 0 0 0 | 16 * * * * * | 1 0 1 0 (..)(..)(..) (o.)(x.)(..) (..)(..)(..)&#x & | 1 0 2 0 | 0 2 0 0 0 1 0 | * 16 * * * * | 0 1 1 0 (oo)(o.)(..) (oo)(o.)(..)4(oo)(o.)(..)&#x & | 1 1 1 0 | 1 1 0 1 0 0 0 | * * 16 * * * | 0 0 2 0 (..)(..)(..) (.x)(.o)(..) (..)(..)(..)&#x & | 0 2 0 1 | 0 0 1 0 2 0 0 | * * * 8 * * | 0 0 2 0 (.o)(oo)(..) (.o)(oo)(..)4(.o)(oo)(..)&#x & | 0 1 1 1 | 0 0 0 1 1 0 1 | * * * * 32 * | 0 0 1 1 (..)(..)(..) (..)(xo)(..) (..)(..)(..)&#x | 0 0 2 1 | 0 0 0 0 0 1 2 | * * * * * 8 | 0 0 2 0 ---------------------------------------------+---------+--------------------+-----------------+--------- (qo)(..)(..) (ox)(..)(..) (..)(..)(..)&#zx & ♦ 2 4 0 0 | 8 0 4 0 0 0 0 | 8 0 0 0 0 0 | 2 * * * (..)(..)(..) (o.)(x.)(o.)4(o.)(o.)(o.)&#xt ♦ 2 0 4 0 | 0 8 0 0 0 4 0 | 0 8 0 0 0 0 | * 2 * * (..)(..)(..) (ox)(xo)(..) (..)(..)(..)&#xr & ♦ 1 2 2 1 | 2 2 1 2 2 1 2 | 1 1 2 1 2 1 | * * 16 * (.o)(qo)(.o) (..)(..)(..) (.o)(oq)(.o)&#zx ♦ 0 2 2 2 | 0 0 0 4 4 0 4 | 0 0 0 0 8 0 | * * * 4
© 2004-2024 | top of page |