Acronym ...
Name complex honeycomb xp-4-o2-4-op,
δp,p3
Vertex figure x2-4-op
Dual selfdual
Especially x2-4-o2-4-o2 (p=2)  
Confer
more general:
xp-4-o2-4-or       xp1-q1-or1   xp2-q2-or2  
general polytopal classes:
complex polytopes  
External
links
wikipedia  

These complex tilings require p to be from 2 (then resulting again in the real squat); 3; 4; 6.

The below also used value q follows the further requirement: 1/p + 2/q + 1/r = 1.


Incidence matrix according to Dynkin symbol

xp-4-o2-4-op   (N → ∞)

.    .    .  | N   2p | p2
------------+----+----+---
xp   .    .  | p  | 2N | p 
------------+----+----+---
xp-4-o2   .   p2 | 2p | N 

xp-q-op   xp-q-op   (N → ∞)

.    .    .    .  | N   p p | p2
-----------------+----+-----+---
xp   .    .    .  | p  | N * | p 
.    .    xp   .  | p  | * N | p 
-----------------+----+-----+---
xp   .    xp   .   p2 | p p | N 

© 2004-2024
top of page