Acronym | toe (alt.: gratet) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TOCID symbol | tO, tTT | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name |
truncated octahedron, omnitruncated tetrahedron, great rhombitetratetrahedron, Voronoi cell of body-centered cubic (bcc) lattice, Kelvin's tetrakaidecahedron, Waterman polyhedron number 10 wrt. face-centered cubic lattice A3 centered at a lattice point, permutohedron of 4 elements, equatorial cross-section of oct-first thex | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© © © | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt(5/2) = 1.581139 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. {4} | sqrt(2) = 1.414214 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. {6} | sqrt(3/2) = 1.224745 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex figure | [4,62] = qo&#h | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Snub derivation |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex layers |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
o q o o Q o (Q=2q) q Q Q q o Q o o q o | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
x u u x w x x w x u u x | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates | (sqrt(2), 1/sqrt(2), 0) & all permutations, all changes of sign | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume | 8 sqrt(2) = 11.313708 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Surface | 6+12 sqrt(3) = 26.784610 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment | (is itself locally convex – no other uniform polyhedral members) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dual | tekah | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dihedral angles |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 24, 36, 14 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
Note that toe can be thought of as the external blend of 1 oct + 8 tricues + 6 squippies, cf. the Steward toroid K3 \ 4Q3(S3). This decomposition is also described as the degenerate segmentochoron xx3ox4oo&#xt.
The second picture shows how the volume of toe is intimely related to half the volume of the cube: each eighth is its vertex-first half. Moreover it displays the interrelation between the primitve cubic and the body-centered cubic lattice, resp. their Voronoi honeycombs each: i.e. chon and batch.
In 1887 Lord Kelvin conjectured that this tetrakaidecahedron was the best shape for packing equal-sized objects together to fill space with minimal surface area. But in 1994 he finally got kind of disproven, cf. Weaire, D. and Phelan, R. "A Counter-Example to Kelvin's Conjecture on Minimal Surfaces." Philos. Mag. Let. 69, 107-110, 1994. They presented a counter-example of a space-filling geometry with even smaller surface to volume ratio, thereby however using non-flat bounding manifolds.
Incidence matrix according to Dynkin symbol
x3x4o . . . | 24 | 1 2 | 2 1 ------+----+-------+---- x . . | 2 | 12 * | 2 0 . x . | 2 | * 24 | 1 1 ------+----+-------+---- x3x . | 6 | 3 3 | 8 * . x4o | 4 | 0 4 | * 6 snubbed forms: β3x4o, x3β4o, s3s4o (or as mere faceting qQo oqQ Qoq&#zh), β3β4o
x3x4/3o . . . | 24 | 1 2 | 2 1 --------+----+-------+---- x . . | 2 | 12 * | 2 0 . x . | 2 | * 24 | 1 1 --------+----+-------+---- x3x . | 6 | 3 3 | 8 * . x4/3o | 4 | 0 4 | * 6 snubbed forms: s3s4/3o
x3x3x . . . | 24 | 1 1 1 | 1 1 1 ------+----+----------+------ x . . | 2 | 12 * * | 1 1 0 . x . | 2 | * 12 * | 1 0 1 . . x | 2 | * * 12 | 0 1 1 ------+----+----------+------ x3x . | 6 | 3 3 0 | 4 * * x . x | 4 | 2 0 2 | * 6 * . x3x | 6 | 0 3 3 | * * 4 snubbed forms: β3x3x, x3β3x, β3β3x, β3x3β, s3s3s (or as mere faceting qQo oqQ Qoq&#zh), β3β3β
s4x3x demi( . . . ) | 24 | 1 1 1 | 1 1 1 --------------+----+----------+------ demi( . x . ) | 2 | 12 * * | 1 1 0 demi( . . x ) | 2 | * 12 * | 0 1 1 sefa( s4x . ) | 2 | * * 12 | 1 0 1 --------------+----+----------+------ s4x . ♦ 4 | 2 0 2 | 6 * * demi( . x3x ) | 6 | 3 3 0 | * 4 * sefa( s4x3x ) | 6 | 0 3 3 | * * 4 starting figure: x4x3x
xuxux4ooqoo&#xt → all heights = 1/sqrt(2) = 0.707107 ({4} || pseudo u-{4} || pseudo (x,q)-{8} || pseudo u-{4} || {4}) o....4o.... | 4 * * * * | 2 1 0 0 0 0 0 | 1 2 0 0 0 .o...4.o... | * 4 * * * | 0 1 2 0 0 0 0 | 0 2 1 0 0 ..o..4..o.. | * * 8 * * | 0 0 1 1 1 0 0 | 0 1 1 1 0 ...o.4...o. | * * * 4 * | 0 0 0 0 2 1 0 | 0 0 1 2 0 ....o4....o | * * * * 4 | 0 0 0 0 0 1 2 | 0 0 0 2 1 ----------------+-----------+---------------+---------- x.... ..... | 2 0 0 0 0 | 4 * * * * * * | 1 1 0 0 0 oo...4oo...&#x | 1 1 0 0 0 | * 4 * * * * * | 0 2 0 0 0 .oo..4.oo..&#x | 0 1 1 0 0 | * * 8 * * * * | 0 1 1 0 0 ..x.. ..... | 0 0 2 0 0 | * * * 4 * * * | 0 1 0 1 0 ..oo.4..oo.&#x | 0 0 1 1 0 | * * * * 8 * * | 0 0 1 1 0 ...oo4...oo&#x | 0 0 0 1 1 | * * * * * 4 * | 0 0 0 2 0 ....x ..... | 0 0 0 0 2 | * * * * * * 4 | 0 0 0 1 1 ----------------+-----------+---------------+---------- x....4o.... | 4 0 0 0 0 | 4 0 0 0 0 0 0 | 1 * * * * xux.. .....&#xt | 2 2 2 0 0 | 1 2 2 1 0 0 0 | * 4 * * * ..... .oqo.&#xt | 0 1 2 1 0 | 0 0 2 0 2 0 0 | * * 4 * * ..xux .....&#xt | 0 0 2 2 2 | 0 0 0 1 2 2 1 | * * * 4 * ....x4....o | 0 0 0 0 4 | 0 0 0 0 0 0 4 | * * * * 1
or o....4o.... & | 8 * * | 2 1 0 0 | 1 2 0 .o...4.o... & | * 8 * | 0 1 2 0 | 0 2 1 ..o..4..o.. | * * 8 | 0 0 2 1 | 0 2 1 -------------------+-------+----------+------ x.... ..... & | 2 0 0 | 8 * * * | 1 1 0 oo...4oo...&#x & | 1 1 0 | * 8 * * | 0 2 0 .oo..4.oo..&#x & | 0 1 1 | * * 16 * | 0 1 1 ..x.. ..... | 0 0 2 | * * * 4 | 0 2 0 -------------------+-------+----------+------ x....4o.... & | 4 0 0 | 4 0 0 0 | 2 * * xux.. .....&#xt & | 2 2 2 | 1 2 2 1 | * 8 * ..... .oqo.&#xt | 0 2 2 | 0 0 4 0 | * * 4
xxux3xuxx&#xt → all heights = sqrt(2/3) = 0.816497 ({6} || pseudo (x,u)-{6} || pseudo (u,x)-{6} || {6}) o...3o... | 6 * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 0 .o..3.o.. | * 6 * * | 0 0 1 1 1 0 0 0 0 | 0 1 1 1 0 0 ..o.3..o. | * * 6 * | 0 0 0 0 1 1 1 0 0 | 0 0 1 1 1 0 ...o3...o | * * * 6 | 0 0 0 0 0 0 1 1 1 | 0 0 0 1 1 1 --------------+---------+-------------------+------------ x... .... | 2 0 0 0 | 3 * * * * * * * * | 1 1 0 0 0 0 .... x... | 2 0 0 0 | * 3 * * * * * * * | 1 0 1 0 0 0 oo..3oo..&#x | 1 1 0 0 | * * 6 * * * * * * | 0 1 1 0 0 0 .x.. .... | 0 2 0 0 | * * * 3 * * * * * | 0 1 0 1 0 0 .oo.3.oo.&#x | 0 1 1 0 | * * * * 6 * * * * | 0 0 1 1 0 0 .... ..x. | 0 0 2 0 | * * * * * 3 * * * | 0 0 1 0 1 0 ..oo3..oo&#x | 0 0 1 1 | * * * * * * 6 * * | 0 0 0 1 1 0 ...x .... | 0 0 0 2 | * * * * * * * 3 * | 0 0 0 1 0 1 .... ...x | 0 0 0 2 | * * * * * * * * 3 | 0 0 0 0 1 1 --------------+---------+-------------------+------------ x...3x... | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 | 1 * * * * * xx.. ....&#x | 2 2 0 0 | 1 0 2 1 0 0 0 0 0 | * 3 * * * * .... xux.&#xt | 2 2 2 0 | 0 1 2 0 2 1 0 0 0 | * * 3 * * * .xux ....&#xt | 0 2 2 2 | 0 0 0 1 2 0 2 1 0 | * * * 3 * * .... ..xx&#x | 0 0 2 2 | 0 0 0 0 0 1 2 0 1 | * * * * 3 * ...x3...x | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 | * * * * * 1
or o...3o... & | 12 * | 1 1 1 0 0 | 1 1 1 .o..3.o.. & | * 12 | 0 0 1 1 1 | 0 1 2 -----------------+-------+------------+------ x... .... & | 2 0 | 6 * * * * | 1 1 0 .... x... & | 2 0 | * 6 * * * | 1 0 1 oo..3oo..&#x & | 1 1 | * * 12 * * | 0 1 1 .x.. .... & | 0 2 | * * * 6 * | 0 1 1 .oo.3.oo.&#x | 0 2 | * * * * 6 | 0 0 2 -----------------+-------+------------+------ x...3x... & | 6 0 | 3 3 0 0 0 | 2 * * xx.. ....&#x & | 2 2 | 1 0 2 1 0 | * 6 * .... xux.&#xt & | 2 4 | 0 1 2 1 2 | * * 6
oqQ qoo4xux&#zxt → all existing heights = 0, Q = 2q = 2.828427 o.. o..4o.. | 8 * * | 1 2 0 0 | 1 2 0 .o. .o.4.o. | * 8 * | 0 2 1 0 | 1 2 0 ..o ..o4..o | * * 8 | 0 0 1 2 | 0 2 1 ----------------+-------+----------+------ ... ... x.. | 2 0 0 | 4 * * * | 0 2 0 oo. oo.4oo.&#x | 1 1 0 | * 16 * * | 1 1 0 .oo .oo4.oo&#x | 0 1 1 | * * 8 * | 0 2 0 ... ... ..x | 0 0 2 | * * * 8 | 0 1 1 ----------------+-------+----------+------ oq. qo. ...&#zx | 2 2 0 | 0 4 0 0 | 4 * * ... ... xux&#xt | 2 2 2 | 1 2 2 1 | * 8 * ... ..o4..x | 0 0 4 | 0 0 0 4 | * * 2
© 2004-2024 | top of page |