Acronym | trat (subsym.: snitititat) | ||||||||||||||||||||||||
Name |
triangular tiling, Delone complex of hexagonal lattice A2 | ||||||||||||||||||||||||
| |||||||||||||||||||||||||
Vertex figure | [36] | ||||||||||||||||||||||||
Vertex layers
(first ones only) |
| ||||||||||||||||||||||||
General of army | (is itself convex) | ||||||||||||||||||||||||
Colonel of regiment | (is itself locally convex – other uniform tiling member: ditatha ) | ||||||||||||||||||||||||
Dual | hexat | ||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||
External links |
The 3-coloring of the vertices allows for partial Stott expansions running through pextrat and pacrothat finally towards rothat.
This tiling also could be considered as a vertex overlay of hexat plus 3 shifted copies of trats with edge size 3 (see below, resp. the above 6-coloring of triangles). Then this decomposition allows for a further 3-step transformation running through uBxx3xoAo3xooA3*a&#zx and uBxx3uxBx3xooA3*a&#zx towards a pure hexat (A = d = 3x, B = 4x). – So this transformation sequence is not a true partial Stott expansion one because pairs of triangles become transformed into single hexagons. But this could be recovered by combining these pairs into rhombs. The corresponding sequence member here then would be rhomb-xAoo3xoAo3xooA3*a&#zx.
The 4-coloring of the faces is still uniform, in fact it could be considered as snub tritritriangular tiling (snitititat), s3s3s3*a.
Incidence matrix according to Dynkin symbol
x3o6o (N → ∞) . . . | N | 6 | 6 ------+---+----+--- x . . | 2 | 3N | 2 ------+---+----+--- x3o . | 3 | 3 | 2N
x3o3o3*a (N → ∞) . . . | N | 6 | 3 3 ---------+---+----+---- x . . | 2 | 3N | 1 1 ---------+---+----+---- x3o . | 3 | 3 | N * x . o3*a | 3 | 3 | * N
x3o6/5o (N → ∞) . . . | N | 6 | 6 --------+---+----+--- x . . | 2 | 3N | 2 --------+---+----+--- x3o . | 3 | 3 | 2N
x3/2o6o (N → ∞) . . . | N | 6 | 6 --------+---+----+--- x . . | 2 | 3N | 2 --------+---+----+--- x3/2o . | 3 | 3 | 2N
x3/2o6/5o (N → ∞) . . . | N | 6 | 6 ----------+---+----+--- x . . | 2 | 3N | 2 ----------+---+----+--- x3/2o . | 3 | 3 | 2N
x3/2o3/2o3*a (N → ∞) . . . | N | 6 | 3 3 -------------+---+----+---- x . . | 2 | 3N | 1 1 -------------+---+----+---- x3/2o . | 3 | 3 | N * x . o3*a | 3 | 3 | * N
o3/2x3/2o3*a (N → ∞) . . . | N | 6 | 3 3 -------------+---+----+---- . x . | 2 | 3N | 1 1 -------------+---+----+---- o3/2x . | 3 | 3 | N * . x3/2o . | 3 | 3 | * N
s6o3o (N → ∞) demi( . . . ) | N | 6 | 3 3 --------------+---+----+---- sefa( s6o . ) | 2 | 3N | 1 1 --------------+---+----+---- s6o . ♦ 3 | 3 | N * sefa( s6o3o ) | 3 | 3 | * N starting figure: x6o3o
s3s6o (N → ∞) demi( . . . ) | 3N | 4 2 | 2 1 3 --------------+----+-------+-------- sefa( s3s . ) | 2 | 6N * | 1 0 1 sefa( . s6o ) | 2 | * 3N | 0 1 1 --------------+----+-------+-------- s3s . ♦ 3 | 3 0 | 2N * * . s6o ♦ 3 | 0 3 | * N * sefa( s3s6o ) | 3 | 2 1 | * * 3N starting figure: x3x6o
s3s3s3*a (N → ∞) demi( . . . ) | 3N | 2 2 2 | 1 1 1 3 -----------------+----+----------+--------- sefa( s3s . ) | 2 | 3N * * | 1 0 0 1 sefa( s . s3*a ) | 2 | * 3N * | 0 1 0 1 sefa( . s3s ) | 2 | * * 3N | 0 0 1 1 -----------------+----+----------+--------- s3s . ♦ 3 | 3 0 0 | N * * * s . s3*a ♦ 3 | 0 3 0 | * N * * . s3s ♦ 3 | 0 0 3 | * * N * sefa( s3s3s3*a ) | 3 | 1 1 1 | * * * 3N starting figure: x3x3x3*a
xdoo3xodo3xood3*a&#zx (N → ∞, d = 3x) o...3o...3o...3*a | 6N * * * | 1 1 1 1 1 1 | 1 1 1 1 1 1 .o..3.o..3.o..3*a | * N * * | 0 0 0 6 0 0 | 3 3 0 0 0 0 ..o.3..o.3..o.3*a | * * N * | 0 0 0 0 6 0 | 0 0 3 3 0 0 ...o3...o3...o3*a | * * * N | 0 0 0 0 0 6 | 0 0 0 0 3 3 ---------------------+----------+-------------------+------------------ x... .... .... | 2 0 0 0 | 3N * * * * * | 0 0 1 0 1 0 .... x... .... | 2 0 0 0 | * 3N * * * * | 1 0 0 0 0 1 .... .... x... | 2 0 0 0 | * * 3N * * * | 0 1 0 1 0 0 oo..3oo..3oo..3*a&#x | 1 1 0 0 | * * * 6N * * | 1 1 0 0 0 0 o.o.3o.o.3o.o.3*a&#x | 1 0 1 0 | * * * * 6N * | 0 0 1 1 0 0 o..o3o..o3o..o3*a&#x | 1 0 0 1 | * * * * * 6N | 0 0 0 0 1 1 ---------------------+----------+-------------------+------------------ .... xo.. .... &#x | 2 1 0 0 | 0 1 0 2 0 0 | 3N * * * * * .... .... xo.. &#x | 2 1 0 0 | 0 0 1 2 0 0 | * 3N * * * * x.o. .... .... &#x | 2 0 1 0 | 1 0 0 0 2 0 | * * 3N * * * .... .... x.o. &#x | 2 0 1 0 | 0 0 1 0 2 0 | * * * 3N * * x..o .... .... &#x | 2 0 0 1 | 1 0 0 0 0 2 | * * * * 3N * .... x..o .... &#x | 2 0 0 1 | 0 1 0 0 0 2 | * * * * * 3N
:xo:∞:ox:&##x (N → ∞) → heights = sqrt(3)/2 = 0.866025 o. ∞ o. | N * | 2 2 0 2 | 2 1 2 1 .o ∞ .o | * N | 0 2 2 2 | 1 2 1 2 -------------+-----+-----------+-------- x. .. | 2 0 | N * * * | 1 0 1 0 oo ∞ oo &#x | 1 1 | * 2N * * | 1 1 0 0 .. .x | 0 2 | * * N * | 0 1 0 1 :oo:∞:oo:&#x | 1 1 | * * * 2N | 0 0 1 1 -------------+-----+-----------+-------- xo .. &#x | 2 1 | 1 2 0 0 | N * * * .. ox &#x | 1 2 | 0 2 1 0 | * N * * :xo: :..:&#x | 2 1 | 1 0 0 2 | * * N * :..: :ox:&#x | 1 2 | 0 0 1 2 | * * * N
© 2004-2024 | top of page |