Acronym | ... |
Name |
complex honeycomb xp-4-o2-4-o2, δp,23, complex honeycomb o2-4-xp-4-o2, complex honeycomb xp-4-o2-4-xp |
Vertex figure | x2-4-o2 |
Especially | x2-4-o2-4-o2 (p=2) |
Confer |
|
External links |
These complex tilings require p to be from 2 (then resulting again in the real squat); 3; 4; 6.
The below also used value q follows the further requirement: 1/p + 2/q + 1/2 = 1, which evaluates into q = 4p/(p-2). Together with the above restriction on p, this leads to the pairs p,q to be one of the followings: 2,∞; 3,12; 4,8; or 6,6.
Incidence matrix according to Dynkin symbol
xp-4-o2-4-o2 (N → ∞) . . . | p2N ♦ 4 | 4 ------------+-----+-----+--- xp . . | p | 4pN | 2 ------------+-----+-----+--- xp-4-o2 . ♦ p2 | 2p | 4N
o2-4-xp-4-o2 (N → ∞) . . . | p2N ♦ 4 | 2 2 ------------+-----+-----+------ . xp . | p | 4pN | 1 1 ------------+-----+-----+------ o2-4-xp . ♦ p2 | 2p | 2N * . xp-4-o2 ♦ p2 | 2p | * 2N
xp-4-o2-4-xp (N → ∞) . . . | p2N ♦ 2 2 | 1 2 1 ------------+-----+---------+------- xp . . | p | 2pN * | 1 1 0 . . xp | p | * 2pN | 0 1 1 ------------+-----+---------+------- xp-4-o2 . ♦ p2 | 2p 0 | N * * xp . xp ♦ p2 | p p | * 2N * . o2-4-xp ♦ p2 | 0 2p | * * N
xp-q-o2 xp-q-o2 (N → ∞) . . . . | p2N ♦ 2 2 | 4 -----------------+-----+---------+--- xp . . . | p | 2pN * | 2 . . xp . | p | * 2pN | 2 -----------------+-----+---------+--- xp . xp . ♦ p2 | p p | 4N
© 2004-2025 | top of page |