| Acronym | ... |
| Name | xoxFoFxox3oxoooooxo5ooxofoxoo&#xt |
| Face vector | 248, 1032, 1020, 236 |
| Confer |
|
The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2o(-x)ofo3oxoox5ooxoo&#zx. Then into VFfxo2o(-x)ofx3oxoo(-x)5ooxof&#zx. And finally into VFfxo2o(-x)of(-x)3oxooo5ooxof&#zx. Then a Stott expansion wrt. the second node produces this polychoron.
Incidence matrix according to Dynkin symbol
xoxFoFxox3oxoooooxo5ooxofoxoo&#xt → height(1,2) = height(3,4) = height(6,7) = height(8,9) = (sqrt(5)-1)/4 = 0.309017
height(2,3) = height(4,5) = height(5,6) = height(7,8) = 1/2
(ike || pseudo id || pseudo srid || pseudo F-ike || pseudo f-doe || pseudo F-ike || pseudo srid || pseudo id || ike)
o........3o........5o........ & | 24 * * * * ♦ 5 5 0 0 0 0 0 0 0 | 5 5 5 0 0 0 0 0 0 0 0 0 | 1 5 1 0 0 0 0
.o.......3.o.......5.o....... & | * 60 * * * | 0 2 4 4 0 0 0 0 0 | 0 1 4 2 2 4 2 0 0 0 0 0 | 0 2 2 2 1 0 0
..o......3..o......5..o...... & | * * 120 * * | 0 0 0 2 2 2 1 1 0 | 0 0 0 0 2 1 2 1 2 2 2 1 | 0 0 1 1 2 1 2
...o.....3...o.....5...o..... & | * * * 24 * | 0 0 0 0 0 0 5 0 1 | 0 0 0 0 0 0 0 0 0 5 0 5 | 0 0 1 0 0 0 5
....o....3....o....5....o.... | * * * * 20 ♦ 0 0 0 0 0 0 0 6 0 | 0 0 0 0 0 0 0 0 0 0 6 3 | 0 0 0 0 0 2 3
------------------------------------+-----------------+-----------------------------------+-------------------------------------------+--------------------
x........ ......... ......... & | 2 0 0 0 0 | 60 * * * * * * * * | 2 1 0 0 0 0 0 0 0 0 0 0 | 1 2 0 0 0 0 0
oo.......3oo.......5oo.......&#x & | 1 1 0 0 0 | * 120 * * * * * * * | 0 1 2 0 0 0 0 0 0 0 0 0 | 0 2 1 0 0 0 0
......... .x....... ......... & | 0 2 0 0 0 | * * 120 * * * * * * | 0 0 1 1 0 1 0 0 0 0 0 0 | 0 1 1 1 0 0 0
.oo......3.oo......5.oo......&#x & | 0 1 1 0 0 | * * * 240 * * * * * | 0 0 0 0 1 1 1 0 0 0 0 0 | 0 0 1 1 1 0 0
..x...... ......... ......... & | 0 0 2 0 0 | * * * * 120 * * * * | 0 0 0 0 1 0 0 1 1 0 1 0 | 0 0 0 1 1 1 1
......... ......... ..x...... & | 0 0 2 0 0 | * * * * * 120 * * * | 0 0 0 0 0 0 1 0 1 1 0 0 | 0 0 1 0 1 0 1
..oo.....3..oo.....5..oo.....&#x & | 0 0 1 1 0 | * * * * * * 120 * * | 0 0 0 0 0 0 0 0 0 2 0 1 | 0 0 1 0 0 0 2
..o.o....3..o.o....5..o.o....&#x & | 0 0 1 0 1 | * * * * * * * 120 * | 0 0 0 0 0 0 0 0 0 0 2 1 | 0 0 0 0 0 1 2
...o.o...3...o.o...5...o.o...&#x | 0 0 0 2 0 | * * * * * * * * 12 | 0 0 0 0 0 0 0 0 0 0 0 5 | 0 0 0 0 0 0 5
------------------------------------+-----------------+-----------------------------------+-------------------------------------------+--------------------
x........3o........ ......... & | 3 0 0 0 0 | 3 0 0 0 0 0 0 0 0 | 40 * * * * * * * * * * * | 1 1 0 0 0 0 0
xo....... ......... .........&#x & | 2 1 0 0 0 | 1 2 0 0 0 0 0 0 0 | * 60 * * * * * * * * * * | 0 2 0 0 0 0 0
......... ox....... .........&#x & | 1 2 0 0 0 | 0 2 1 0 0 0 0 0 0 | * * 120 * * * * * * * * * | 0 1 1 0 0 0 0
.o.......3.x....... ......... & | 0 3 0 0 0 | 0 0 3 0 0 0 0 0 0 | * * * 40 * * * * * * * * | 0 1 0 1 0 0 0
.ox...... ......... .........&#x & | 0 1 2 0 0 | 0 0 0 2 1 0 0 0 0 | * * * * 120 * * * * * * * | 0 0 0 1 1 0 0
......... .xo...... .........&#x & | 0 2 1 0 0 | 0 0 1 2 0 0 0 0 0 | * * * * * 120 * * * * * * | 0 0 1 1 0 0 0
......... ......... .ox......&#x & | 0 1 2 0 0 | 0 0 0 2 0 1 0 0 0 | * * * * * * 120 * * * * * | 0 0 1 0 1 0 0
..x......3..o...... ......... & | 0 0 3 0 0 | 0 0 0 0 3 0 0 0 0 | * * * * * * * 40 * * * * | 0 0 0 1 0 1 0
..x...... ......... ..x...... & | 0 0 4 0 0 | 0 0 0 0 2 2 0 0 0 | * * * * * * * * 60 * * * | 0 0 0 0 1 0 1
......... ......... ..xo.....&#x & | 0 0 2 1 0 | 0 0 0 0 0 1 2 0 0 | * * * * * * * * * 120 * * | 0 0 1 0 0 0 1
..x.o.... ......... .........&#x & | 0 0 2 0 1 | 0 0 0 0 1 0 0 2 0 | * * * * * * * * * * 120 * | 0 0 0 0 0 1 1
..ooooo..3..ooooo..5..ooooo..&# | 0 0 2 2 1 | 0 0 0 0 0 0 2 2 1 | * * * * * * * * * * * 60 | 0 0 0 0 0 0 2
------------------------------------+-----------------+-----------------------------------+-------------------------------------------+--------------------
x........3o........5o........ & ♦ 12 0 0 0 0 | 30 0 0 0 0 0 0 0 0 | 20 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * *
xo.......3ox....... .........&#x & ♦ 3 3 0 0 0 | 3 6 3 0 0 0 0 0 0 | 1 3 3 1 0 0 0 0 0 0 0 0 | * 40 * * * * *
......... oxoo.....5ooxo.....&#xt & ♦ 1 5 5 1 0 | 0 5 5 10 0 5 5 0 0 | 0 0 5 0 0 5 5 0 0 5 0 0 | * * 24 * * * *
.ox......3.xo...... .........&#x & ♦ 0 3 3 0 0 | 0 0 3 6 3 0 0 0 0 | 0 0 0 1 3 3 0 1 0 0 0 0 | * * * 40 * * *
.ox...... ......... .ox......&#x & ♦ 0 1 4 0 0 | 0 0 0 4 2 2 0 0 0 | 0 0 0 0 2 0 2 0 1 0 0 0 | * * * * 60 * *
..x.o....3..o.o.... .........&#x & ♦ 0 0 3 0 1 | 0 0 0 0 3 0 0 3 0 | 0 0 0 0 0 0 0 1 0 0 3 0 | * * * * * 40 *
..xFoFx.. ......... ..xofox..&#xt ♦ 0 0 8 4 2 | 0 0 0 0 4 4 8 8 2 | 0 0 0 0 0 0 0 0 2 4 4 4 | * * * * * * 30
© 2004-2025 | top of page |