Acronym | ... |
Name | tetra-augmented axially-tetrahedral ursachoron xofo3ooox3oxoo&#xt |
© ©The second picture shows the bottom x3o3o in yellow, the vertices of the augmentation tips in green (layer o3o3x), and the medial vertices of f3o3o in red. | |
Circumradius | ... |
Lace city in approx. ASCII-art |
o o x x o o f o o f o x x o x o o x |
+--------------------- x3o3o (tet) / +------------- o3o3x (dual tet) / / +--------- f3o3o (f-tet) / / / +-- o3x3o (oct) / / / / o3o o3o o3x x3o x3o o3o f3o o3x | |
Coordinates |
|
Face vector | 18, 70, 90, 38 |
Confer |
It shall be noted here, that the circumradius of the dual x-tet is sqrt(3/8) = 0.612372, while the inradius of the f-tet is sqrt[(3+sqrt(5))/48] = 0.330280. Thus the augmentation tips well protrude beyond – even if the perspective chosen in the first lace city would suggest otherwise. This then becomes visible also within the second lace city.
On the other hand, the second picture above kind of shows the green vertices and the yellow tet as spanning a cube. But this is not the case. Rather those have a different height-coordinate, flattened by this perspective. In fact, the vertices of these 2 dual tet will span an hex.
Incidence matrix according to Dynkin symbol
xofo3ooox3oxoo&#xt → height(1,2) = 1/sqrt(8) = 0.353553 height(2,3) = height(3,4) = sqrt[3+sqrt(5)]/4 = 0.572061 (tet || pseudo dual tet || pseudo f-tet || oct) o...3o...3o... | 4 * * * | 3 3 1 0 0 0 0 | 3 6 3 3 0 0 0 0 0 | 1 3 6 0 0 0 0 .o..3.o..3.o.. | * 4 * * ♦ 0 3 0 3 3 0 0 | 0 3 3 0 6 3 0 0 0 | 0 1 3 3 1 0 0 ..o.3..o.3..o. | * * 4 * | 0 0 1 3 0 3 0 | 0 0 3 3 6 0 3 0 0 | 0 0 6 3 0 1 0 ...o3...o3...o | * * * 6 | 0 0 0 0 2 2 4 | 0 0 0 1 4 4 4 2 2 | 0 0 2 4 2 2 1 -------------------+---------+--------------------+------------------------+---------------- x... .... .... | 2 0 0 0 | 6 * * * * * * | 2 2 0 1 0 0 0 0 0 | 1 2 2 0 0 0 0 oo..3oo..3oo..&#x | 1 1 0 0 | * 12 * * * * * | 0 2 1 0 0 0 0 0 0 | 0 1 2 0 0 0 0 o.o.3o.o.3o.o.&#x | 1 0 1 0 | * * 4 * * * * | 0 0 3 3 0 0 0 0 0 | 0 0 6 0 0 0 0 .oo.3.oo.3.oo.&#x | 0 1 1 0 | * * * 12 * * * | 0 0 1 0 2 0 0 0 0 | 0 0 2 1 0 0 0 .o.o3.o.o3.o.o&#x | 0 1 0 1 | * * * * 12 * * | 0 0 0 0 2 2 0 0 0 | 0 0 1 2 1 0 0 ..oo3..oo3..oo&#x | 0 0 1 1 | * * * * * 12 * | 0 0 0 1 2 0 2 0 0 | 0 0 2 2 0 1 0 .... ...x .... | 0 0 0 2 | * * * * * * 12 | 0 0 0 0 0 1 1 1 1 | 0 0 0 1 1 1 1 -------------------+---------+--------------------+------------------------+---------------- x...3o... .... | 3 0 0 0 | 3 0 0 0 0 0 0 | 4 * * * * * * * * | 1 1 0 0 0 0 0 xo.. .... ....&#x | 2 1 0 0 | 1 2 0 0 0 0 0 | * 12 * * * * * * * | 0 1 1 0 0 0 0 ooo.3ooo.3ooo.&#x | 1 1 1 0 | 0 1 1 1 0 0 0 | * * 12 * * * * * * | 0 0 2 0 0 0 0 x.fo .... ....&#xt | 2 0 2 1 | 1 0 2 0 0 2 0 | * * * 6 * * * * * | 0 0 2 0 0 0 0 .ooo3.ooo3.ooo&#x | 0 1 1 1 | 0 0 0 1 1 1 0 | * * * * 24 * * * * | 0 0 1 1 0 0 0 .... .o.x ....&#x | 0 1 0 2 | 0 0 0 0 2 0 1 | * * * * * 12 * * * | 0 0 0 1 1 0 0 .... ..ox ....&#x | 0 0 1 2 | 0 0 0 0 0 2 1 | * * * * * * 12 * * | 0 0 0 1 0 1 0 ...o3...x .... | 0 0 0 3 | 0 0 0 0 0 0 3 | * * * * * * * 4 * | 0 0 0 0 1 0 1 .... ...x3...o | 0 0 0 3 | 0 0 0 0 0 0 3 | * * * * * * * * 4 | 0 0 0 0 0 1 1 -------------------+---------+--------------------+------------------------+---------------- x...3o...3o... ♦ 4 0 0 0 | 6 0 0 0 0 0 0 | 4 0 0 0 0 0 0 0 0 | 1 * * * * * * xo..3oo.. ....&#x ♦ 3 1 0 0 | 3 3 0 0 0 0 0 | 1 3 0 0 0 0 0 0 0 | * 4 * * * * * xofo .... ....&#xr ♦ 2 1 2 1 | 1 2 2 2 1 2 0 | 0 1 2 1 2 0 0 0 0 | * * 12 * * * * cycle: (1342) .... .oox ....&#x ♦ 0 1 1 2 | 0 0 0 1 2 2 1 | 0 0 0 0 2 1 1 0 0 | * * * 12 * * * .o.o3.o.x ....&#x ♦ 0 1 0 3 | 0 0 0 0 3 0 3 | 0 0 0 0 0 3 0 1 0 | * * * * 4 * * .... ..ox3..oo&#x ♦ 0 0 1 3 | 0 0 0 0 0 3 3 | 0 0 0 0 0 0 3 0 1 | * * * * * 4 * ...o3...x3...o ♦ 0 0 0 6 | 0 0 0 0 0 0 12 | 0 0 0 0 0 0 0 4 4 | * * * * * * 1
© 2004-2024 | top of page |