Acronym | gishi, gspD | |||||||||||||||||||||||||
Name |
great stellated hecatonicosachoron, greatened stellated polydodecahedron | |||||||||||||||||||||||||
Cross sections |
| |||||||||||||||||||||||||
Circumradius | (sqrt(5)-1)/2 = 0.618034 | |||||||||||||||||||||||||
Inradius | (sqrt(5)-1)/4 = 0.309017 | |||||||||||||||||||||||||
Density | 20 | |||||||||||||||||||||||||
General of army | ex | |||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| |||||||||||||||||||||||||
Dual | gahi | |||||||||||||||||||||||||
Dihedral angles | ||||||||||||||||||||||||||
Face vector | 120, 720, 720, 120 | |||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||
External links |
![]() ![]() ![]() ![]() |
As abstract polytope gishi is isomorphic to gahi, thereby replacing gissid by doe, resp. replacing pentagrammal faces by pentagonal ones, resp. replacing pentagonal edge figures each by pentagrammal ones, resp. replacing ike vertex figures by gike ones.
Both gishi and gahi can be seen as different realizations of the same self-dual regular abstract polychoron {5,3,5|3} = x5o3o5o | x3o (where the suffix denotes the size of the corresponding hole). In fact, the latter occurs here as face of the inscribed gax.
Incidence matrix according to Dynkin symbol
o5o3o5/2x . . . . | 120 ♦ 12 | 30 | 20 ----------+-----+-----+-----+---- . . . x | 2 | 720 | 5 | 5 ----------+-----+-----+-----+---- . . o5/2x | 5 | 5 | 720 | 2 ----------+-----+-----+-----+---- . o3o5/2x ♦ 20 | 30 | 12 | 120
o5o3o5/3x . . . . | 120 ♦ 12 | 30 | 20 ----------+-----+-----+-----+---- . . . x | 2 | 720 | 5 | 5 ----------+-----+-----+-----+---- . . o5/3x | 5 | 5 | 720 | 2 ----------+-----+-----+-----+---- . o3o5/3x ♦ 20 | 30 | 12 | 120
o5o3/2o5/2x . . . . | 120 ♦ 12 | 30 | 20 ------------+-----+-----+-----+---- . . . x | 2 | 720 | 5 | 5 ------------+-----+-----+-----+---- . . o5/2x | 5 | 5 | 720 | 2 ------------+-----+-----+-----+---- . o3/2o5/2x ♦ 20 | 30 | 12 | 120
o5o3/2o5/3x . . . . | 120 ♦ 12 | 30 | 20 ------------+-----+-----+-----+---- . . . x | 2 | 720 | 5 | 5 ------------+-----+-----+-----+---- . . o5/3x | 5 | 5 | 720 | 2 ------------+-----+-----+-----+---- . o3/2o5/3x ♦ 20 | 30 | 12 | 120
o5/4o3o5/2x . . . . | 120 ♦ 12 | 30 | 20 ------------+-----+-----+-----+---- . . . x | 2 | 720 | 5 | 5 ------------+-----+-----+-----+---- . . o5/2x | 5 | 5 | 720 | 2 ------------+-----+-----+-----+---- . o3o5/2x ♦ 20 | 30 | 12 | 120
o5/4o3o5/3x . . . . | 120 ♦ 12 | 30 | 20 ------------+-----+-----+-----+---- . . . x | 2 | 720 | 5 | 5 ------------+-----+-----+-----+---- . . o5/3x | 5 | 5 | 720 | 2 ------------+-----+-----+-----+---- . o3o5/3x ♦ 20 | 30 | 12 | 120
o5/4o3/2o5/2x . . . . | 120 ♦ 12 | 30 | 20 --------------+-----+-----+-----+---- . . . x | 2 | 720 | 5 | 5 --------------+-----+-----+-----+---- . . o5/2x | 5 | 5 | 720 | 2 --------------+-----+-----+-----+---- . o3/2o5/2x ♦ 20 | 30 | 12 | 120
o5/4o3/2o5/3x . . . . | 120 ♦ 12 | 30 | 20 --------------+-----+-----+-----+---- . . . x | 2 | 720 | 5 | 5 --------------+-----+-----+-----+---- . . o5/3x | 5 | 5 | 720 | 2 --------------+-----+-----+-----+---- . o3/2o5/3x ♦ 20 | 30 | 12 | 120
© 2004-2025 | top of page |