Acronym | hex, K-4.2 (alt: octit, trapt) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Name |
hexadecachoron, tetracross (β4), orthoplex, hemitesseract, hemioctachoron, 16-cell, aeroter(id), tetrahedral antiprism, vertex figure of tac, (line-)octahedral tegum, (line-)trigonal-antirprismatic tegum, Gosset polytope 11,1, 8-3-stepprism, lattice C4 contact polytope (span of its small roots), equatorial cross-section of vertex-first tac | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Segmentochoron display / VRML |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
Cross sections |
© | ||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | 1/sqrt(2) = 0.707107 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Edge radius | 1/2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Face radius | 1/sqrt(6) = 0.408248 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius | 1/sqrt(8) = 0.353553 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex figure |
© | ||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex layers |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
x3o o3o o3o o3x | |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
Volume | 1/6 = 0.166667 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Surface | 4 sqrt(2)/3 = 1.885618 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Rel. Roundness | 3 π2/64 = 46.263771 % | ||||||||||||||||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| ||||||||||||||||||||||||||||||||||||||||||||||||||
Dual | tes | ||||||||||||||||||||||||||||||||||||||||||||||||||
Dihedral angles | |||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 8, 24, 32, 16 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
Considering its cells, i.e. the tets, more as digonal antiprisms, then always 4 build a closed ring within edgewise connection each, 4 of witch thus are swirling around each other.
This polychoron is not only obtained as the vertex alternated hemiation of the tesseract, the later could be re-obtained from this one by the extension of either its even or its odd facets. In fact it happens to be the kernel of any 2 tesseracts of the great icositetrachoron.
Note that hex can be thought of as the external blend of 4 squascs. Further, the overlay of 2 such fully perpendicular decompositions would amount to the degenerate segmentoteron xo4oo ox4oo&#x.
The number of ways to color the hexadecachoron with different colors per cell is 16!/192 = 108 972 864 000. – This is because the color group is the permutation group of 16 elements and has size 16!, while the order of the pure rotational tesseractic group is 192. (The reflectional tesseractic group would have twice as many, i.e. 384 elements.)
When considered as tet antiprism, the analysis of the being used lacing facets shows that the half-height section results in a half-edge sized co.
Being the dual of tes and considering that one's coordinates, it is apparent that this solid is nothing but a hyperball wrt. the norm |x|+|y|+|z|+|w|.
Incidence matrix according to Dynkin symbol
x3o3o4o . . . . | 8 ♦ 6 | 12 | 8 --------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 --------+---+----+----+--- x3o . . | 3 | 3 | 32 | 2 --------+---+----+----+--- x3o3o . ♦ 4 | 6 | 4 | 16 snubbed forms: β3o3o4o
x3o3o4/3o . . . . | 8 ♦ 6 | 12 | 8 ----------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ----------+---+----+----+--- x3o . . | 3 | 3 | 32 | 2 ----------+---+----+----+--- x3o3o . ♦ 4 | 6 | 4 | 16
x3o3/2o4o . . . . | 8 ♦ 6 | 12 | 8 ----------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ----------+---+----+----+--- x3o . . | 3 | 3 | 32 | 2 ----------+---+----+----+--- x3o3/2o . ♦ 4 | 6 | 4 | 16
x3o3/2o4/3o . . . . | 8 ♦ 6 | 12 | 8 ------------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ------------+---+----+----+--- x3o . . | 3 | 3 | 32 | 2 ------------+---+----+----+--- x3o3/2o . ♦ 4 | 6 | 4 | 16
x3/2o3o4o . . . . | 8 ♦ 6 | 12 | 8 ----------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ----------+---+----+----+--- x3/2o . . | 3 | 3 | 32 | 2 ----------+---+----+----+--- x3/2o3o . ♦ 4 | 6 | 4 | 16
x3/2o3o4/3o . . . . | 8 ♦ 6 | 12 | 8 ------------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ------------+---+----+----+--- x3/2o . . | 3 | 3 | 32 | 2 ------------+---+----+----+--- x3/2o3o . ♦ 4 | 6 | 4 | 16
x3/2o3/2o4o . . . . | 8 ♦ 6 | 12 | 8 ------------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ------------+---+----+----+--- x3/2o . . | 3 | 3 | 32 | 2 ------------+---+----+----+--- x3/2o3/2o . ♦ 4 | 6 | 4 | 16
x3/2o3/2o4/3o . . . . | 8 ♦ 6 | 12 | 8 --------------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 --------------+---+----+----+--- x3/2o . . | 3 | 3 | 32 | 2 --------------+---+----+----+--- x3/2o3/2o . ♦ 4 | 6 | 4 | 16
x3o3o *b3o . . . . | 8 ♦ 6 | 12 | 4 4 -----------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 -----------+---+----+----+---- x3o . . | 3 | 3 | 32 | 1 1 -----------+---+----+----+---- x3o3o . ♦ 4 | 6 | 4 | 8 * x3o . *b3o ♦ 4 | 6 | 4 | * 8 snubbed forms: β3o3o *b3o
x3o3o *b3/2o . . . . | 8 ♦ 6 | 12 | 4 4 -------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 -------------+---+----+----+---- x3o . . | 3 | 3 | 32 | 1 1 -------------+---+----+----+---- x3o3o . ♦ 4 | 6 | 4 | 8 * x3o . *b3/2o ♦ 4 | 6 | 4 | * 8
x3o3/2o *b3/2o . . . . | 8 ♦ 6 | 12 | 4 4 ---------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 ---------------+---+----+----+---- x3o . . | 3 | 3 | 32 | 1 1 ---------------+---+----+----+---- x3o3/2o . ♦ 4 | 6 | 4 | 8 * x3o . *b3/2o ♦ 4 | 6 | 4 | * 8
x3/2o3o *b3o . . . . | 8 ♦ 6 | 12 | 4 4 -------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 -------------+---+----+----+---- x3/2o . . | 3 | 3 | 32 | 1 1 -------------+---+----+----+---- x3/2o3o . ♦ 4 | 6 | 4 | 8 * x3/2o . *b3o ♦ 4 | 6 | 4 | * 8
x3/2o3o *b3/2o . . . . | 8 ♦ 6 | 12 | 4 4 ---------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 ---------------+---+----+----+---- x3/2o . . | 3 | 3 | 32 | 1 1 ---------------+---+----+----+---- x3/2o3o . ♦ 4 | 6 | 4 | 8 * x3/2o . *b3/2o ♦ 4 | 6 | 4 | * 8
x3/2o3/2o *b3/2o . . . . | 8 ♦ 6 | 12 | 4 4 -----------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 -----------------+---+----+----+---- x3/2o . . | 3 | 3 | 32 | 1 1 -----------------+---+----+----+---- x3/2o3/2o . ♦ 4 | 6 | 4 | 8 * x3/2o . *b3/2o ♦ 4 | 6 | 4 | * 8
s4o3o3o demi( . . . . ) | 8 ♦ 6 | 12 | 4 4 ----------------+---+----+----+---- s4o . . ♦ 2 | 24 | 4 | 2 2 ----------------+---+----+----+---- sefa( s4o3o . ) | 3 | 3 | 32 | 1 1 ----------------+---+----+----+---- s4o3o . ♦ 4 | 6 | 4 | 8 * sefa( s4o3o3o ) ♦ 4 | 6 | 4 | * 8 starting figure: x4o3o3o
s2s4o3o demi( . . . . ) | 8 ♦ 3 3 | 9 3 | 3 1 4 ----------------+---+-------+------+------ s2s . . ♦ 2 | 12 * | 4 0 | 2 0 2 . s4o . ♦ 2 | * 12 | 2 2 | 1 1 2 ----------------+---+-------+------+------ sefa( s2s4o . ) | 3 | 2 1 | 24 * | 1 0 1 sefa( . s4o3o ) | 3 | 0 3 | * 8 | 0 1 1 ----------------+---+-------+------+------ s2s4o . ♦ 4 | 4 2 | 4 0 | 6 * * . s4o3o ♦ 4 | 0 6 | 0 4 | * 2 * sefa( s2s4o3o ) ♦ 4 | 3 3 | 3 1 | * * 8 starting figure: x x4o3o
s4o2s4o demi( . . . . ) | 8 ♦ 1 4 1 | 6 6 | 2 2 4 ----------------+---+--------+-------+------ s4o . . ♦ 2 | 4 * * | 4 0 | 2 0 2 s 2 s . ♦ 2 | * 16 * | 2 2 | 1 1 2 . . s4o ♦ 2 | * * 4 | 0 4 | 0 2 2 ----------------+---+--------+-------+------ sefa( s4o2s . ) | 3 | 1 2 0 | 16 * | 1 0 1 sefa( s 2 s4o ) | 3 | 0 2 1 | * 16 | 0 1 1 ----------------+---+--------+-------+------ s4o2s . ♦ 4 | 2 4 0 | 4 0 | 4 * * s 2 s4o ♦ 4 | 0 4 2 | 0 4 | * 4 * sefa( s4o2s4o ) ♦ 4 | 1 4 1 | 2 2 | * * 8
or demi( . . . . ) | 8 ♦ 2 4 | 12 | 4 4 -------------------+---+------+----+---- s4o . . & ♦ 2 | 8 * | 4 | 2 2 s 2 s . ♦ 2 | * 16 | 4 | 2 2 -------------------+---+------+----+---- sefa( s4o2s . ) & | 3 | 1 2 | 32 | 1 1 -------------------+---+------+----+---- s4o2s . & ♦ 4 | 2 4 | 4 | 8 * sefa( s4o2s4o ) ♦ 4 | 2 4 | 4 | * 8 starting figure: x4o x4o
s2s2s4o demi( . . . . ) | 8 ♦ 1 2 2 1 | 6 3 3 | 2 1 1 4 ----------------+---+---------+--------+-------- s2s . . ♦ 2 | 4 * * * | 4 0 0 | 2 0 0 2 s 2 s . ♦ 2 | * 8 * * | 2 2 0 | 1 1 0 2 . s2s . ♦ 2 | * * 8 * | 2 0 2 | 1 0 1 2 . . s4o ♦ 2 | * * * 4 | 0 2 2 | 0 1 1 2 ----------------+---+---------+--------+-------- sefa( s2s2s . ) | 3 | 1 1 1 0 | 16 * * | 1 0 0 1 sefa( s 2 s4o ) | 3 | 0 2 0 1 | * 8 * | 0 1 0 1 sefa( . s2s4o ) | 3 | 0 0 2 1 | * * 8 | 0 0 1 1 ----------------+---+---------+--------+-------- s2s2s . ♦ 4 | 2 2 2 0 | 4 0 0 | 4 * * * s 2 s4o ♦ 4 | 0 4 0 2 | 0 4 0 | * 2 * * . s2s4o ♦ 4 | 0 0 4 2 | 0 0 4 | * * 2 * sefa( s2s2s4o ) ♦ 4 | 1 2 2 1 | 2 1 1 | * * * 8 starting figure: x x x4o
s2s2s2s demi( . . . . ) | 8 ♦ 1 1 1 1 1 1 | 3 3 3 3 | 1 1 1 1 4 -----------------+---+-------------+---------+---------- s2s . . ♦ 2 | 4 * * * * * | 2 2 0 0 | 1 1 0 0 2 s 2 s . ♦ 2 | * 4 * * * * | 2 0 2 0 | 1 0 1 0 2 s . . s2*a ♦ 2 | * * 4 * * * | 0 2 2 0 | 0 1 1 0 2 . s2s . ♦ 2 | * * * 4 * * | 2 0 0 2 | 1 0 0 1 2 . s 2 s ♦ 2 | * * * * 4 * | 0 2 0 2 | 0 1 0 1 2 . . s2s ♦ 2 | * * * * * 4 | 0 0 2 2 | 0 0 1 1 2 -----------------+---+-------------+---------+---------- sefa( s2s2s . ) | 3 | 1 1 0 1 0 0 | 8 * * * | 1 0 0 0 1 sefa( s2s 2 s ) | 3 | 1 0 1 0 1 0 | * 8 * * | 0 1 0 0 1 sefa( s 2 s2s ) | 3 | 0 1 1 0 0 1 | * * 8 * | 0 0 1 0 1 sefa( . s2s2s ) | 3 | 0 0 0 1 1 1 | * * * 8 | 0 0 0 1 1 -----------------+---+-------------+---------+---------- s2s2s . ♦ 4 | 2 2 0 2 0 0 | 4 0 0 0 | 2 * * * * s2s 2 s ♦ 4 | 2 0 2 0 2 0 | 0 4 0 0 | * 2 * * * s 2 s2s ♦ 4 | 0 2 2 0 0 2 | 0 0 4 0 | * * 2 * * . s2s2s ♦ 4 | 0 0 0 2 2 2 | 0 0 0 4 | * * * 2 * sefa( s2s2s2s ) ♦ 4 | 1 1 1 1 1 1 | 1 1 1 1 | * * * * 8 starting figure: x x x x
xo3oo3ox&#x → height = 1/sqrt(2) = 0.707107
(tet || dual tet)
o.3o.3o. | 4 * ♦ 3 3 0 | 3 6 3 0 | 1 3 3 1 0
.o3.o3.o | * 4 ♦ 0 3 3 | 0 3 6 3 | 0 1 3 3 1
------------+-----+--------+-----------+----------
x. .. .. | 2 0 | 6 * * | 2 2 0 0 | 1 2 1 0 0
oo3oo3oo&#x | 1 1 | * 12 * | 0 2 2 0 | 0 1 2 1 0
.. .. .x | 0 2 | * * 6 | 0 0 2 2 | 0 0 1 2 1
------------+-----+--------+-----------+----------
x.3o. .. | 3 0 | 3 0 0 | 4 * * * | 1 1 0 0 0
xo .. ..&#x | 2 1 | 1 2 0 | * 12 * * | 0 1 1 0 0
.. .. ox&#x | 1 2 | 0 2 1 | * * 12 * | 0 0 1 1 0
.. .o3.x | 0 3 | 0 0 3 | * * * 4 | 0 0 0 1 1
------------+-----+--------+-----------+----------
x.3o.3o. ♦ 4 0 | 6 0 0 | 4 0 0 0 | 1 * * * *
xo3oo ..&#x ♦ 3 1 | 3 3 0 | 1 3 0 0 | * 4 * * *
xo .. ox&#x ♦ 2 2 | 1 4 1 | 0 2 2 0 | * * 6 * *
.. oo3ox&#x ♦ 1 3 | 0 3 3 | 0 0 3 1 | * * * 4 *
.o3.o3.x ♦ 0 4 | 0 0 6 | 0 0 0 4 | * * * * 1
or o.3o.3o. & | 8 ♦ 3 3 | 3 9 | 1 4 3 --------------+---+-------+------+------ x. .. .. & | 2 | 12 * | 2 2 | 1 2 1 oo3oo3oo&#x | 2 | * 12 | 0 4 | 0 2 2 --------------+---+-------+------+------ x.3o. .. & | 3 | 3 0 | 8 * | 1 1 0 xo .. ..&#x & | 3 | 1 2 | * 24 | 0 1 1 --------------+---+-------+------+------ x.3o.3o. & ♦ 4 | 6 0 | 4 0 | 2 * * xo3oo ..&#x & ♦ 4 | 3 3 | 1 3 | * 8 * xo .. ox&#x ♦ 4 | 2 4 | 0 4 | * * 6
oxo3ooo4ooo&#xt → both heights = 1/sqrt(2) = 0.707107 (pt || pseudo oct || pt) o..3o..4o.. | 1 * * ♦ 6 0 0 | 12 0 0 | 8 0 .o.3.o.4.o. | * 6 * ♦ 1 4 1 | 4 4 4 | 4 4 ..o3..o4..o | * * 1 ♦ 0 0 6 | 0 0 12 | 0 8 ---------------+-------+--------+---------+---- oo.3oo.4oo.&#x | 1 1 0 | 6 * * | 4 0 0 | 4 0 .x. ... ... | 0 2 0 | * 12 * | 1 2 1 | 2 2 .oo3.oo4.oo&#x | 0 1 1 | * * 6 | 0 0 4 | 0 4 ---------------+-------+--------+---------+---- ox. ... ...&#x | 1 2 0 | 2 1 0 | 12 * * | 2 0 .x.3.o. ... | 0 3 0 | 0 3 0 | * 8 * | 1 1 .xo ... ...&#x | 0 2 1 | 0 1 2 | * * 12 | 0 2 ---------------+-------+--------+---------+---- ox.3oo. ...&#x ♦ 1 3 0 | 3 3 0 | 3 1 0 | 8 * .xo3.oo ...&#x ♦ 0 3 1 | 0 3 3 | 0 1 3 | * 8
or o..3o..4o.. & | 2 * ♦ 6 0 | 12 0 | 8 .o.3.o.4.o. | * 6 ♦ 2 4 | 8 4 | 8 -----------------+-----+-------+------+--- oo.3oo.4oo.&#x & | 1 1 | 12 * | 4 0 | 4 .x. ... ... | 0 2 | * 12 | 2 2 | 4 -----------------+-----+-------+------+--- ox. ... ...&#x & | 1 2 | 2 1 | 24 * | 2 .x.3.o. ... | 0 3 | 0 3 | * 8 | 2 -----------------+-----+-------+------+--- ox.3oo. ...&#x & ♦ 1 3 | 3 3 | 3 1 | 16
ooo3oxo3ooo&#xt → both heights = 1/sqrt(2) = 0.707107 (pt || pseudo oct || pt) o..3o..3o.. | 1 * * ♦ 6 0 0 | 12 0 0 0 | 4 4 0 0 .o.3.o.3.o. | * 6 * ♦ 1 4 1 | 4 2 2 4 | 2 2 2 2 ..o3..o3..o | * * 1 ♦ 0 0 6 | 0 0 0 12 | 0 0 4 4 ---------------+-------+--------+-----------+-------- oo.3oo.3oo.&#x | 1 1 0 | 6 * * | 4 0 0 0 | 2 2 0 0 ... .x. ... | 0 2 0 | * 12 * | 1 1 1 1 | 1 1 1 1 .oo3.oo3.oo&#x | 0 1 1 | * * 6 | 0 0 0 4 | 0 0 2 2 ---------------+-------+--------+-----------+-------- ... ox. ...&#x | 1 2 0 | 2 1 0 | 12 * * * | 1 1 0 0 .o.3.x. ... | 0 3 0 | 0 3 0 | * 4 * * | 1 0 1 0 ... .x.3.o. | 0 3 0 | 0 3 0 | * * 4 * | 0 1 0 1 ... .xo ...&#x | 0 2 1 | 0 1 2 | * * * 12 | 0 0 1 1 ---------------+-------+--------+-----------+-------- oo.3ox. ...&#x ♦ 1 3 0 | 3 3 0 | 3 1 0 0 | 4 * * * ... ox.3oo.&#x ♦ 1 3 0 | 3 3 0 | 3 0 1 0 | * 4 * * .oo3.xo ...&#x ♦ 0 3 1 | 0 3 3 | 0 1 0 3 | * * 4 * ... .xo3.oo&#x ♦ 0 3 1 | 0 3 3 | 0 0 1 3 | * * * 4
or o..3o..3o.. & | 2 * ♦ 6 0 | 12 0 0 | 4 4 .o.3.o.3.o. | * 6 ♦ 2 4 | 8 2 2 | 4 4 -----------------+-----+-------+--------+---- oo.3oo.3oo.&#x & | 1 1 | 12 * | 4 0 0 | 2 2 ... .x. ... | 0 2 | * 12 | 2 1 1 | 2 2 -----------------+-----+-------+--------+---- ... ox. ...&#x & | 1 2 | 2 1 | 24 * * | 1 1 .o.3.x. ... | 0 3 | 0 3 | * 4 * | 2 0 ... .x.3.o. | 0 3 | 0 3 | * * 4 | 0 2 -----------------+-----+-------+--------+---- oo.3ox. ...&#x & ♦ 1 3 | 3 3 | 3 1 0 | 8 * ... ox.3oo.&#x & ♦ 1 3 | 3 3 | 3 0 1 | * 8
o(qo)o o(ox)o4o(oo)o&#xt → both heights = 1/sqrt(2) = 0.707107 (pt || pseudo oct || pt) o(..). o(..).4o(..). & | 2 * * ♦ 2 4 0 0 | 8 4 0 | 8 .(o.). .(o.).4.(o.). | * 2 * ♦ 2 0 4 0 | 8 0 4 | 8 .(.o). .(.o).4.(.o). | * * 4 ♦ 0 2 2 2 | 4 4 4 | 8 --------------------------+-------+---------+--------+--- o(o.). o(o.).4o(o.).&#x & | 1 1 0 | 4 * * * | 4 0 0 | 4 o(.o). o(.o).4o(.o).&#x & | 1 0 1 | * 8 * * | 2 2 0 | 4 .(oo). .(oo).4.(oo).&#x | 0 1 1 | * * 8 * | 2 0 2 | 4 .(..). .(.x). .(..). | 0 0 2 | * * * 4 | 0 2 2 | 4 --------------------------+-------+---------+--------+--- o(oo). o(oo).4o(oo).&#x & | 1 1 1 | 1 1 1 0 | 16 * * | 2 .(..). o(.x). .(..).&#x & | 1 0 2 | 0 2 0 1 | * 8 * | 2 .(..). .(ox). .(..).&#x | 0 1 2 | 0 0 2 1 | * * 8 | 2 --------------------------+-------+---------+--------+--- .(..). o(ox). .(..).&#x & ♦ 1 1 2 | 1 2 2 1 | 2 1 1 | 16
o(qoo)o o(oqo)o o(ooq)o&#xt → both heights = 1/sqrt(2) = 0.707107 (pt || pseudo oct || pt) o(...). o(...). o(...). | 1 * * * * ♦ 2 2 2 0 0 0 0 0 0 | 4 4 4 0 0 0 0 | 8 0 .(o..). .(o..). .(o..). | * 2 * * * ♦ 1 0 0 2 2 1 0 0 0 | 2 2 0 4 2 2 0 | 4 4 .(.o.). .(.o.). .(.o.). | * * 2 * * ♦ 0 1 0 2 0 0 2 1 0 | 2 0 2 4 2 0 2 | 4 4 .(..o). .(..o). .(..o). | * * * 2 * ♦ 0 0 1 0 2 0 2 0 1 | 0 2 2 4 0 2 2 | 4 4 .(...)o .(...)o .(...)o | * * * * 1 ♦ 0 0 0 0 0 2 0 2 2 | 0 0 0 0 4 4 4 | 0 8 ---------------------------+-----------+-------------------+---------------+---- o(o..). o(o..). o(o..).&#x | 1 1 0 0 0 | 2 * * * * * * * * | 2 2 0 0 0 0 0 | 4 0 o(.o.). o(.o.). o(.o.).&#x | 1 0 1 0 0 | * 2 * * * * * * * | 2 0 2 0 0 0 0 | 4 0 o(..o). o(..o). o(..o).&#x | 1 0 0 1 0 | * * 2 * * * * * * | 0 2 2 0 0 0 0 | 4 0 .(oo.). .(oo.). .(oo.).&#x | 0 1 1 0 0 | * * * 4 * * * * * | 1 0 0 2 1 0 0 | 2 2 .(o.o). .(o.o). .(o.o).&#x | 0 1 0 1 0 | * * * * 4 * * * * | 0 1 0 2 0 1 0 | 2 2 .(o..)o .(o..)o .(o..)o&#x | 0 1 0 0 1 | * * * * * 2 * * * | 0 0 0 0 2 2 0 | 0 4 .(.oo). .(.oo). .(.oo).&#x | 0 0 1 1 0 | * * * * * * 4 * * | 0 0 1 2 0 0 1 | 2 2 .(.o.)o .(.o.)o .(.o.)o&#x | 0 0 1 0 1 | * * * * * * * 2 * | 0 0 0 0 2 0 2 | 0 4 .(..o)o .(..o)o .(..o)o&#x | 0 0 0 1 1 | * * * * * * * * 2 | 0 0 0 0 0 2 2 | 0 4 ---------------------------+-----------+-------------------+---------------+---- o(oo.). o(oo.). o(oo.).&#x | 1 1 1 0 0 | 1 1 0 1 0 0 0 0 0 | 4 * * * * * * | 2 0 o(o.o). o(o.o). o(o.o).&#x | 1 1 0 1 0 | 1 0 1 0 1 0 0 0 0 | * 4 * * * * * | 2 0 o(.oo). o(.oo). o(.oo).&#x | 1 0 1 1 0 | 0 1 1 0 0 0 1 0 0 | * * 4 * * * * | 2 0 .(ooo). .(ooo). .(ooo).&#x | 0 1 1 1 0 | 0 0 0 1 1 0 1 0 0 | * * * 8 * * * | 1 1 .(oo.)o .(oo.)o .(oo.)o&#x | 0 1 1 0 1 | 0 0 0 1 0 1 0 1 0 | * * * * 4 * * | 0 2 .(o.o)o .(o.o)o .(o.o)o&#x | 0 1 0 1 1 | 0 0 0 0 1 1 0 0 1 | * * * * * 4 * | 0 2 .(.oo)o .(.oo)o .(.oo)o&#x | 0 0 1 1 1 | 0 0 0 0 0 0 1 1 1 | * * * * * * 4 | 0 2 ---------------------------+-----------+-------------------+---------------+---- o(ooo). o(ooo). o(ooo).&#x ♦ 1 1 1 1 0 | 1 1 1 1 1 0 1 0 0 | 1 1 1 1 0 0 0 | 8 * .(ooo)o .(ooo)o .(ooo)o&#x ♦ 0 1 1 1 1 | 0 0 0 1 1 1 1 1 1 | 0 0 0 1 1 1 1 | * 8
xox oxo4ooo&#xt → both heights = 1/2 (line || perp pseudo {4} || line) o.. o..4o.. | 2 * * ♦ 1 4 1 0 0 0 | 4 4 4 0 0 | 4 4 0 .o. .o.4.o. | * 4 * ♦ 0 2 0 2 2 0 | 1 4 2 1 4 | 2 4 2 ..o ..o4..o | * * 2 ♦ 0 0 1 0 4 1 | 0 0 4 4 4 | 0 4 4 ---------------+-------+-------------+-----------+------ x.. ... ... | 2 0 0 | 1 * * * * * | 4 0 0 0 0 | 4 0 0 oo. oo.4oo.&#x | 1 1 0 | * 8 * * * * | 1 2 1 0 0 | 2 2 0 o.o o.o4o.o&#x | 1 0 1 | * * 2 * * * | 0 0 4 0 0 | 0 4 0 ... .x. ... | 0 2 0 | * * * 4 * * | 0 2 0 0 2 | 1 2 1 .oo .oo4.oo&#x | 0 1 1 | * * * * 8 * | 0 0 1 1 2 | 0 2 2 ..x ... ... | 0 0 2 | * * * * * 1 | 0 0 0 4 0 | 0 0 4 ---------------+-------+-------------+-----------+------ xo. ... ...&#x | 2 1 0 | 1 2 0 0 0 0 | 4 * * * * | 2 0 0 ... ox. ...&#x | 1 2 0 | 0 2 0 1 0 0 | * 8 * * * | 1 1 0 ooo ooo4ooo&#x | 1 1 1 | 0 1 1 0 1 0 | * * 8 * * | 0 2 0 .ox ... ...&#x | 0 1 2 | 0 0 0 0 2 1 | * * * 4 * | 0 0 2 ... .xo ...&#x | 0 2 1 | 0 0 0 1 2 0 | * * * * 8 | 0 1 1 ---------------+-------+-------------+-----------+------ xo. ox. ...&#x ♦ 2 2 0 | 1 4 0 1 0 0 | 2 2 0 0 0 | 4 * * ... oxo ...&#x ♦ 1 2 1 | 0 2 1 1 2 0 | 0 1 2 0 1 | * 8 * .ox .xo ...&#x ♦ 0 2 2 | 0 0 0 1 4 1 | 0 0 0 2 2 | * * 4
or o.. o..4o.. & | 4 * ♦ 1 4 1 0 | 4 4 4 | 4 4 .o. .o.4.o. | * 4 ♦ 0 4 0 2 | 2 8 2 | 4 4 -----------------+-----+----------+--------+---- x.. ... ... & | 2 0 | 2 * * * | 4 0 0 | 4 0 oo. oo.4oo.&#x & | 1 1 | * 16 * * | 1 2 1 | 2 2 o.o o.o4o.o&#x | 2 0 | * * 2 * | 0 0 4 | 0 4 ... .x. ... | 0 2 | * * * 4 | 0 4 0 | 2 2 -----------------+-----+----------+--------+---- xo. ... ...&#x & | 2 1 | 1 2 0 0 | 8 * * | 2 0 ... ox. ...&#x & | 1 2 | 0 2 0 1 | * 16 * | 1 1 ooo ooo4ooo&#x | 2 1 | 0 2 1 0 | * * 8 | 0 2 -----------------+-----+----------+--------+---- xo. ox. ...&#x & ♦ 2 2 | 1 4 0 1 | 2 2 0 | 8 * ... oxo ...&#x ♦ 2 2 | 0 4 1 1 | 0 2 2 | * 8
xox oxo oxo&#xt → both heights = 1/2 (line || perp pseudo {4} || line) o.. o.. o.. | 2 * * ♦ 1 4 1 0 0 0 0 | 4 2 2 4 0 0 0 | 2 2 2 2 0 0 .o. .o. .o. | * 4 * ♦ 0 2 0 1 1 2 0 | 1 2 2 2 1 2 2 | 1 1 2 2 1 1 ..o ..o ..o | * * 2 ♦ 0 0 1 0 0 4 1 | 0 0 0 4 4 2 2 | 0 0 2 2 2 2 ---------------+-------+---------------+---------------+------------ x.. ... ... | 2 0 0 | 1 * * * * * * | 4 0 0 0 0 0 0 | 2 2 0 0 0 0 oo. oo. oo.&#x | 1 1 0 | * 8 * * * * * | 1 1 1 1 0 0 0 | 1 1 1 1 0 0 o.o o.o o.o&#x | 1 0 1 | * * 2 * * * * | 0 0 0 4 0 0 0 | 0 0 2 2 0 0 ... .x. ... | 0 2 0 | * * * 2 * * * | 0 2 0 0 0 2 0 | 1 0 2 0 1 0 ... ... .x. | 0 2 0 | * * * * 2 * * | 0 0 2 0 0 0 2 | 0 1 0 2 0 1 .oo .oo .oo&#x | 0 1 1 | * * * * * 8 * | 0 0 0 1 1 1 1 | 0 0 1 1 1 1 ..x ... ... | 0 0 2 | * * * * * * 1 | 0 0 0 0 4 0 0 | 0 0 0 0 2 2 ---------------+-------+---------------+---------------+------------ xo. ... ...&#x | 2 1 0 | 1 2 0 0 0 0 0 | 4 * * * * * * | 1 1 0 0 0 0 ... ox. ...&#x | 1 2 0 | 0 2 0 1 0 0 0 | * 4 * * * * * | 1 0 1 0 0 0 ... ... ox.&#x | 1 2 0 | 0 2 0 0 1 0 0 | * * 4 * * * * | 0 1 0 1 0 0 ooo ooo ooo&#x | 1 1 1 | 0 1 1 0 0 1 0 | * * * 8 * * * | 0 0 1 1 0 0 .ox ... ...&#x | 0 1 2 | 0 0 0 0 0 2 1 | * * * * 4 * * | 0 0 0 0 1 1 ... .xo ...&#x | 0 2 1 | 0 0 0 1 0 2 0 | * * * * * 4 * | 0 0 1 0 1 0 ... ... .xo&#x | 0 2 1 | 0 0 0 0 1 2 0 | * * * * * * 4 | 0 0 0 1 0 1 ---------------+-------+---------------+---------------+------------ xo. ox. ...&#x ♦ 2 2 0 | 1 4 0 1 0 0 0 | 2 2 0 0 0 0 0 | 2 * * * * * xo. ... ox.&#x ♦ 2 2 0 | 1 4 0 0 1 0 0 | 2 0 2 0 0 0 0 | * 2 * * * * ... oxo ...&#x ♦ 1 2 1 | 0 2 1 1 0 2 0 | 0 1 0 2 0 1 0 | * * 4 * * * ... ... oxo&#x ♦ 1 2 1 | 0 2 1 0 1 2 0 | 0 0 1 2 0 0 1 | * * * 4 * * .ox .xo ...&#x ♦ 0 2 2 | 0 0 0 1 0 4 1 | 0 0 0 0 2 2 0 | * * * * 2 * .ox ... .xo&#x ♦ 0 2 2 | 0 0 0 0 1 4 1 | 0 0 0 0 2 0 2 | * * * * * 2
or o.. o.. o.. & | 4 * ♦ 1 4 1 0 0 | 4 2 2 4 | 2 2 2 2 .o. .o. .o. | * 4 ♦ 0 4 0 1 1 | 2 4 4 2 | 2 2 2 2 -----------------+-----+------------+---------+-------- x.. ... ... & | 2 0 | 2 * * * * | 4 0 0 0 | 2 2 0 0 oo. oo. oo.&#x & | 1 1 | * 16 * * * | 1 1 1 1 | 1 1 1 1 o.o o.o o.o&#x | 2 0 | * * 2 * * | 0 0 0 4 | 0 0 2 2 ... .x. ... | 0 2 | * * * 2 * | 0 4 0 0 | 2 0 2 0 ... ... .x. | 0 2 | * * * * 2 | 0 0 4 0 | 0 2 0 2 -----------------+-----+------------+---------+-------- xo. ... ...&#x & | 2 1 | 1 2 0 0 0 | 8 * * * | 1 1 0 0 ... ox. ...&#x & | 1 2 | 0 2 0 1 0 | * 8 * * | 1 0 1 0 ... ... ox.&#x & | 1 2 | 0 2 0 0 1 | * * 8 * | 0 1 0 1 ooo ooo ooo&#x | 2 1 | 0 2 1 0 0 | * * * 8 | 0 0 1 1 -----------------+-----+------------+---------+-------- xo. ox. ...&#x & ♦ 2 2 | 1 4 0 1 0 | 2 2 0 0 | 4 * * * xo. ... ox.&#x & ♦ 2 2 | 1 4 0 0 1 | 2 0 2 0 | * 4 * * ... oxo ...&#x ♦ 2 2 | 0 4 1 1 0 | 0 2 0 2 | * * 4 * ... ... oxo&#x ♦ 2 2 | 0 4 1 0 1 | 0 0 2 2 | * * * 4
xoo3oox oqo&#xt → both heights = 1/sqrt(6) = 0.408248 ({3} || perp q-line || dual {3}) o..3o.. o.. | 3 * * ♦ 2 2 2 0 0 | 1 4 2 1 4 0 0 | 2 4 2 0 .o.3.o. .o. | * 2 * ♦ 0 3 0 3 0 | 0 3 0 0 6 3 0 | 1 3 3 1 ..o3..o ..o | * * 3 ♦ 0 0 2 2 2 | 0 0 1 2 4 4 1 | 0 2 4 2 ---------------+-------+-----------+----------------+-------- x.. ... ... | 2 0 0 | 3 * * * * | 1 2 1 0 0 0 0 | 2 2 0 0 oo.3oo. oo.&#x | 1 1 0 | * 6 * * * | 0 2 0 0 2 0 0 | 1 2 1 0 o.o3o.o o.o&#x | 1 0 1 | * * 6 * * | 0 0 1 1 2 0 0 | 0 2 2 0 .oo3.oo .oo&#x | 0 1 1 | * * * 6 * | 0 0 0 0 2 2 0 | 0 1 2 1 ... ..x ... | 0 0 2 | * * * * 3 | 0 0 0 1 0 2 1 | 0 0 2 2 ---------------+-------+-----------+----------------+-------- x..3o.. ... | 3 0 0 | 3 0 0 0 0 | 1 * * * * * * | 2 0 0 0 xo. ... ...&#x | 2 1 0 | 1 2 0 0 0 | * 6 * * * * * | 1 1 0 0 x.o ... ...&#x | 2 0 1 | 1 0 2 0 0 | * * 3 * * * * | 0 2 0 0 ... o.x ...&#x | 1 0 2 | 0 0 2 0 1 | * * * 3 * * * | 0 0 2 0 ooo3ooo ooo&#x | 1 1 1 | 0 1 1 1 0 | * * * * 12 * * | 0 1 1 0 ... .ox ...&#x | 0 1 2 | 0 0 0 2 1 | * * * * * 6 * | 0 0 1 1 ..o3..x ... | 0 0 3 | 0 0 0 0 3 | * * * * * * 1 | 0 0 0 2 ---------------+-------+-----------+----------------+-------- xo.3oo. ...&#x ♦ 3 1 0 | 3 3 0 0 0 | 1 3 0 0 0 0 0 | 2 * * * xoo ... ...&#x ♦ 2 1 1 | 1 2 2 1 0 | 0 1 1 0 2 0 0 | * 6 * * ... oox ...&#x ♦ 1 1 2 | 0 1 2 2 1 | 0 0 0 1 2 1 0 | * * 6 * .oo3.ox ...&#x ♦ 0 1 3 | 0 0 0 3 3 | 0 0 0 0 0 3 1 | * * * 2
or o..3o.. o.. & | 6 * ♦ 2 2 2 | 1 4 3 4 | 2 6 .o.3.o. .o. | * 2 ♦ 0 6 0 | 0 6 0 6 | 2 6 ------------------+-----+--------+-----------+----- x.. ... ... & | 2 0 | 6 * * | 1 2 1 0 | 2 2 oo.3oo. oo.&#x & | 1 1 | * 12 * | 0 2 0 2 | 1 3 o.o3o.o o.o&#x | 2 0 | * * 6 | 0 0 2 2 | 0 4 ------------------+-----+--------+-----------+----- x..3o.. ... & | 3 0 | 3 0 0 | 2 * * * | 2 0 xo. ... ...&#x & | 2 1 | 1 2 0 | * 12 * * | 1 1 x.o ... ...&#x & | 3 0 | 1 0 2 | * * 6 * | 0 2 ooo3ooo ooo&#x | 2 1 | 0 2 1 | * * * 12 | 0 2 ------------------+-----+--------+-----------+----- xo.3oo. ...&#x & ♦ 3 1 | 3 3 0 | 1 3 0 0 | 4 * xoo ... ...&#x & ♦ 3 1 | 1 3 2 | 0 1 1 2 | * 12
oxoo3ooox&#xr → all cyclical heights = sqrt(2/3) = 0.816497 in fact this lace simplex degenerates into a rhomb with diagonals: height(1,3) = sqrt(2) = 1.414214 height(2,4) = sqrt(2/3) = 0.816497 (pt || ({3} || inv {3}) || pt) o(..).3o(..). & | 2 * ♦ 3 3 0 0 | 3 3 6 0 0 | 1 1 3 3 .(o.).3.(o.). & | * 6 ♦ 1 1 2 2 | 2 2 4 1 3 | 1 1 3 3 --------------------+-----+---------+------------+-------- o(o.).3o(o.).&#x & | 1 1 | 6 * * * | 2 0 2 0 0 | 1 0 2 1 o(.o).3o(.o).&#x & | 1 1 | * 6 * * | 0 2 2 0 0 | 0 1 1 2 .(x.). .(..). & | 0 2 | * * 6 * | 1 1 0 1 1 | 1 1 1 1 .(oo).3.(oo).&#x & | 0 2 | * * * 6 | 0 0 2 0 2 | 0 0 2 2 --------------------+-----+---------+------------+-------- o(x.). .(..).&#x & | 1 2 | 2 0 1 0 | 6 * * * * | 1 0 1 0 .(..). o(.x).&#x & | 1 2 | 0 2 1 0 | * 6 * * * | 0 1 0 1 o(oo).3o(oo).&#x & | 1 2 | 1 1 0 1 | * * 12 * * | 0 0 1 1 .(x.).3.(o.). & | 0 3 | 0 0 3 0 | * * * 2 * | 1 1 0 0 .(xo). .(..). & | 0 3 | 0 0 1 2 | * * * * 6 | 0 0 1 1 --------------------+-----+---------+------------+-------- o(x.).3o(o.).&#x & ♦ 1 3 | 3 0 3 0 | 3 0 0 1 0 | 2 * * * o(.o).3o(.x).&#x & ♦ 1 3 | 0 3 3 0 | 0 3 0 1 0 | * 2 * * o(xo). .(..).&#x & ♦ 1 3 | 2 1 1 2 | 1 0 2 0 1 | * * 6 * .(..). o(ox).&#x & ♦ 1 3 | 1 2 1 2 | 0 1 2 0 1 | * * * 6
xo4oo ox4oo&#zx → height = 0 (tegum sum of {4} and fully perp {4}) (tegum product of 2 {4}) o.4o. o.4o. | 4 * ♦ 2 4 * | 8 4 | 8 .o4.o .o4.o | * 4 ♦ 0 4 2 | 4 8 | 8 ---------------+-----+--------+-------+--- x. .. .. .. | 2 0 | 4 * * | 4 0 | 4 oo4oo oo4oo&#x | 1 1 | * 16 * | 2 2 | 4 .. .. .x .. | 0 2 | * * 4 | 0 4 | 4 ---------------+-----+--------+-------+--- xo .. .. ..&#x | 2 1 | 1 2 0 | 16 * | 2 .. .. ox ..&#x | 1 2 | 0 2 1 | * 16 | 2 ---------------+-----+--------+-------+--- xo .. ox ..&#x ♦ 2 2 | 1 4 1 | 2 2 | 16
or o.4o. o.4o. & | 8 ♦ 2 4 | 12 | 8 -----------------+---+------+----+--- x. .. .. .. & | 2 | 8 * | 4 | 4 oo4oo oo4oo&#x | 2 | * 16 | 4 | 4 -----------------+---+------+----+--- xo .. .. ..&#x & | 3 | 1 2 | 32 | 2 -----------------+---+------+----+--- xo .. ox ..&#x ♦ 4 | 2 4 | 4 | 16
xo xo ox4oo&#zx → height = 0 (tegum sum of {4} and fully perp {4}) (tegum product of 2 {4}) o. o. o.4o. | 4 * ♦ 1 1 4 0 | 4 4 4 | 4 4 .o .o .o4.o | * 4 ♦ 0 0 4 2 | 2 2 8 | 4 4 ---------------+-----+----------+--------+---- x. .. .. .. | 2 0 | 2 * * * | 4 0 0 | 4 0 .. x. .. .. | 2 0 | * 2 * * | 0 4 0 | 0 4 oo oo oo4oo&#x | 1 1 | * * 16 * | 1 1 2 | 2 2 .. .. .x .. | 0 2 | * * * 4 | 0 0 4 | 2 2 ---------------+-----+----------+--------+---- xo .. .. ..&#x | 2 1 | 1 0 2 0 | 8 * * | 2 0 .. xo .. ..&#x | 2 1 | 0 1 2 0 | * 8 * | 0 2 .. .. ox ..&#x | 1 2 | 0 0 2 1 | * * 16 | 1 1 ---------------+-----+----------+--------+---- xo .. ox ..&#x ♦ 2 2 | 1 0 2 1 | 2 0 2 | 8 * .. xo ox ..&#x ♦ 2 2 | 0 1 2 1 | 0 2 2 | * 8
xo xo ox ox&#zx → height = 0 (tegum sum of {4} and fully perp {4}) (tegum product of 2 {4}) o. o. o. o. | 4 * ♦ 1 1 4 0 0 | 4 4 2 2 | 2 2 2 2 .o .o .o .o | * 4 ♦ 0 0 4 1 1 | 2 2 4 4 | 2 2 2 2 ----------------+-----+------------+---------+-------- x. .. .. .. | 2 0 | 2 * * * * | 4 0 0 0 | 2 2 0 0 .. x. .. .. | 2 0 | * 2 * * * | 0 4 0 0 | 0 0 2 2 oo oo oo oo&#x | 1 1 | * * 16 * * | 1 1 1 1 | 1 1 1 1 .. .. .x .. | 0 2 | * * * 2 * | 0 0 4 0 | 2 0 2 0 .. .. .. .x | 0 2 | * * * * 2 | 0 0 0 4 | 0 2 0 2 ----------------+-----+------------+---------+-------- xo .. .. ..&#x | 2 1 | 1 0 2 0 0 | 8 * * * | 1 1 0 0 .. xo .. ..&#x | 2 1 | 0 1 2 0 0 | * 8 * * | 0 0 1 1 .. .. ox ..&#x | 1 2 | 0 0 2 1 0 | * * 8 * | 1 0 1 0 .. .. .. ox&#x | 1 2 | 0 0 2 0 1 | * * * 8 | 0 1 0 1 ----------------+-----+------------+---------+-------- xo .. ox ..&#x ♦ 2 2 | 1 0 4 1 0 | 2 0 2 0 | 4 * * * xo .. .. ox&#x ♦ 2 2 | 1 0 4 0 1 | 2 0 0 2 | * 4 * * .. xo ox ..&#x ♦ 2 2 | 0 1 4 1 0 | 0 2 2 0 | * * 4 * .. xo .. ox&#x ♦ 2 2 | 0 1 4 0 1 | 0 2 0 2 | * * * 4
xoxo oxox&#xr → all cyclical heights = 1/sqrt(2) = 0.707107 (in fact this lace simplex degenerates into a square) o... o... | 2 * * * ♦ 1 2 1 2 0 0 0 0 0 0 | 2 1 2 1 2 2 2 0 0 0 0 0 | 1 1 1 2 1 2 0 0 0 .o.. .o.. | * 2 * * ♦ 0 2 0 0 1 2 1 0 0 0 | 1 2 0 0 2 2 0 1 2 2 0 0 | 1 0 2 1 0 2 1 1 0 ..o. ..o. | * * 2 * ♦ 0 0 1 0 0 2 0 1 2 0 | 0 0 0 0 2 0 2 2 1 2 2 1 | 0 0 1 0 1 2 1 2 1 ...o ...o | * * * 2 ♦ 0 0 0 2 0 0 1 0 2 1 | 0 0 1 2 0 2 2 0 0 2 1 2 | 0 1 0 1 2 2 0 1 1 -------------+---------+---------------------+-------------------------+------------------ x... .... | 2 0 0 0 | 1 * * * * * * * * * | 2 0 2 0 0 0 0 0 0 0 0 0 | 1 1 0 2 0 0 0 0 0 oo.. oo..&#x | 1 1 0 0 | * 4 * * * * * * * * | 1 1 0 0 1 1 0 0 0 0 0 0 | 1 0 1 1 0 1 0 0 0 o.o. o.o.&#x | 1 0 1 0 | * * 2 * * * * * * * | 0 0 0 0 2 0 2 0 0 0 0 0 | 0 0 1 0 1 2 0 0 0 o..o o..o&#x | 1 0 0 1 | * * * 4 * * * * * * | 0 0 1 1 0 1 1 0 0 0 0 0 | 0 1 0 1 1 1 0 0 0 .... .x.. | 0 2 0 0 | * * * * 1 * * * * * | 0 2 0 0 0 0 0 0 2 0 0 0 | 1 0 2 0 0 0 1 0 0 .oo. .oo.&#x | 0 1 1 0 | * * * * * 4 * * * * | 0 0 0 0 1 0 0 1 1 1 0 0 | 0 0 1 0 0 1 1 1 0 .o.o .o.o&#x | 0 1 0 1 | * * * * * * 2 * * * | 0 0 0 0 0 2 0 0 0 2 0 0 | 0 0 0 1 0 2 0 1 0 ..x. .... | 0 0 2 0 | * * * * * * * 1 * * | 0 0 0 0 0 0 0 2 0 0 2 0 | 0 0 0 0 0 0 1 2 1 ..oo ..oo&#x | 0 0 1 1 | * * * * * * * * 4 * | 0 0 0 0 0 0 1 0 0 1 1 1 | 0 0 0 0 1 1 0 1 1 .... ...x | 0 0 0 2 | * * * * * * * * * 1 | 0 0 0 2 0 0 0 0 0 0 0 2 | 0 1 0 0 2 0 0 0 1 -------------+---------+---------------------+-------------------------+------------------ xo.. ....&#x | 2 1 0 0 | 1 2 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0 .... ox..&#x | 1 2 0 0 | 0 2 0 0 1 0 0 0 0 0 | * 2 * * * * * * * * * * | 1 0 1 0 0 0 0 0 0 x..o ....&#x | 2 0 0 1 | 1 0 0 2 0 0 0 0 0 0 | * * 2 * * * * * * * * * | 0 1 0 1 0 0 0 0 0 .... o..x&#x | 1 0 0 2 | 0 0 0 2 0 0 0 0 0 1 | * * * 2 * * * * * * * * | 0 1 0 0 1 0 0 0 0 ooo. ooo.&#x | 1 1 1 0 | 0 1 1 0 0 1 0 0 0 0 | * * * * 4 * * * * * * * | 0 0 1 0 0 1 0 0 0 oo.o oo.o&#x | 1 1 0 1 | 0 1 0 1 0 0 1 0 0 0 | * * * * * 4 * * * * * * | 0 0 0 1 0 1 0 0 0 o.oo o.oo&#x | 1 0 1 1 | 0 0 1 1 0 0 0 0 1 0 | * * * * * * 4 * * * * * | 0 0 0 0 1 1 0 0 0 .ox. ....&#x | 0 1 2 0 | 0 0 0 0 0 2 0 1 0 0 | * * * * * * * 2 * * * * | 0 0 0 0 0 0 1 1 0 .... .xo.&#x | 0 2 1 0 | 0 0 0 0 1 2 0 0 0 0 | * * * * * * * * 2 * * * | 0 0 1 0 0 0 1 0 0 .ooo .ooo&#x | 0 1 1 1 | 0 0 0 0 0 1 1 0 1 0 | * * * * * * * * * 4 * * | 0 0 0 0 0 1 0 1 0 ..xo ....&#x | 0 0 2 1 | 0 0 0 0 0 0 0 1 2 0 | * * * * * * * * * * 2 * | 0 0 0 0 0 0 0 1 1 .... ..ox&#x | 0 0 1 2 | 0 0 0 0 0 0 0 0 2 1 | * * * * * * * * * * * 2 | 0 0 0 0 1 0 0 0 1 -------------+---------+---------------------+-------------------------+------------------ xo.. ox..&#x ♦ 2 2 0 0 | 1 4 0 0 1 0 0 0 0 0 | 2 2 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * * x..o o..x&#x ♦ 2 0 0 2 | 1 0 0 4 0 0 0 0 0 1 | 0 0 2 2 0 0 0 0 0 0 0 0 | * 1 * * * * * * * .... oxo.&#x ♦ 1 2 1 0 | 0 2 1 0 1 2 0 0 0 0 | 0 1 0 0 2 0 0 0 1 0 0 0 | * * 2 * * * * * * xo.o ....&#x ♦ 2 1 0 1 | 1 2 0 2 0 0 1 0 0 0 | 1 0 1 0 0 2 0 0 0 0 0 0 | * * * 2 * * * * * .... o.ox&#x ♦ 1 0 1 2 | 0 0 1 2 0 0 0 0 2 1 | 0 0 0 1 0 0 2 0 0 0 0 1 | * * * * 2 * * * * oooo oooo&#x ♦ 1 1 1 1 | 0 1 1 1 0 1 1 0 1 0 | 0 0 0 0 1 1 1 0 0 1 0 0 | * * * * * 4 * * * .ox. .xo.&#x ♦ 0 2 2 0 | 0 0 0 0 1 4 0 1 0 0 | 0 0 0 0 0 0 0 2 2 0 0 0 | * * * * * * 1 * * .oxo ....&#x ♦ 0 1 2 1 | 0 0 0 0 0 2 1 1 2 0 | 0 0 0 0 0 0 0 1 0 2 1 0 | * * * * * * * 2 * ..xo ..ox&#x ♦ 0 0 2 2 | 0 0 0 0 0 0 0 1 4 1 | 0 0 0 0 0 0 0 0 0 0 2 2 | * * * * * * * * 1
or o... o... & | 8 ♦ 1 4 1 | 6 6 | 2 4 2 ---------------+---+--------+-------+------ x... .... & | 2 | 4 * * | 4 0 | 2 2 0 oo.. oo..&#x & | 2 | * 16 * | 2 2 | 1 2 1 o.o. o.o.&#x & | 2 | * * 4 | 0 4 | 0 2 2 ---------------+---+--------+-------+------ xo.. ....&#x & | 3 | 1 2 0 | 16 * | 1 1 0 ooo. ooo.&#x & | 3 | 0 2 1 | * 16 | 0 1 1 ---------------+---+--------+-------+------ xo.. ox..&#x & ♦ 4 | 2 4 0 | 4 0 | 4 * * xo.o ....&#x & ♦ 4 | 1 4 1 | 2 2 | * 8 * oooo oooo&#x ♦ 4 | 0 4 2 | 0 4 | * * 4
qo ox3oo4oo&#zx → height = 0 (tegum sum of q-line and perp oct) (tegum product of q-line with oct) o. o.3o.4o. | 2 * ♦ 6 0 | 12 0 | 8 .o .o3.o4.o | * 6 ♦ 2 4 | 8 4 | 8 ---------------+-----+-------+------+--- oo oo3oo4oo&#x | 1 1 | 12 * | 4 0 | 4 .. .x .. .. | 0 2 | * 12 | 2 2 | 4 ---------------+-----+-------+------+--- .. ox .. ..&#x | 1 2 | 2 1 | 24 * | 2 .. .x3.o .. | 0 3 | 0 3 | * 8 | 2 ---------------+-----+-------+------+--- .. ox3oo ..&#x ♦ 1 3 | 3 3 | 3 1 | 16
qo oo3ox3oo&#zx → height = 0 (tegum sum of q-line and perp oct) (tegum product of q-line with oct) o. o.3o.3o. | 2 * ♦ 6 0 | 12 0 0 | 4 4 .o .o3.o3.o | * 6 ♦ 2 4 | 8 2 2 | 4 4 ---------------+-----+-------+--------+---- oo oo3oo3oo&#x | 1 1 | 12 * | 4 0 0 | 2 2 .. .. .x .. | 0 2 | * 12 | 2 1 1 | 2 2 ---------------+-----+-------+--------+---- .. .. ox ..&#x | 1 2 | 2 1 | 24 * * | 1 1 .. .o3.x .. | 0 3 | 0 3 | * 4 * | 2 0 .. .. .x3.o | 0 3 | 0 3 | * * 4 | 0 2 ---------------+-----+-------+--------+---- .. oo3ox ..&#x ♦ 1 3 | 3 3 | 3 1 0 | 8 * .. .. ox3oo&#x ♦ 1 3 | 3 3 | 3 0 1 | * 8
qo os2os3os&#zx → height = 0 (tegum sum of q-line and perp oct) (tegum product of q-line with oct) o. demi( o.2o.3o. ) | 2 * ♦ 6 0 0 | 6 6 0 0 | 2 6 .o demi( .o2.o3.o ) | * 6 ♦ 2 2 2 | 4 4 1 3 | 2 6 -----------------------+-----+--------+-----------+----- oo demi( oo2oo3oo )&#x | 1 1 | 12 * * | 2 2 0 0 | 1 3 .. .s2.s .. | 0 2 | * 6 * | 2 0 0 2 | 0 4 .. sefa( .. .s3.s ) | 0 2 | * * 6 | 0 2 1 1 | 2 2 -----------------------+-----+--------+-----------+----- oo os2os .. &#x | 1 2 | 2 1 0 | 12 * * * | 0 2 oo sefa( .. os3os )&#x | 1 2 | 2 0 1 | * 12 * * | 1 1 .. .. .s3.s | 0 3 | 0 0 3 | * * 2 * | 2 0 .. sefa( .s2.s3.s ) | 0 3 | 0 2 1 | * * * 6 | 0 2 -----------------------+-----+--------+-----------+----- oo .. os3os &#x ♦ 1 3 | 3 0 3 | 0 3 1 0 | 4 * oo sefa( os2os3os )&#x ♦ 1 3 | 3 2 1 | 2 1 0 1 | * 12
qooo oqoo ooqo oooq&#zx → height = 0 (tegum sum of 4 pairwise perp q-lines) (tegum product of 4 q-lines) o... o... o... o... | 2 * * * ♦ 2 2 2 0 0 0 | 4 4 4 0 | 8 .o.. .o.. .o.. .o.. | * 2 * * ♦ 2 0 0 2 2 0 | 4 4 0 4 | 8 ..o. ..o. ..o. ..o. | * * 2 * ♦ 0 2 0 2 0 2 | 4 0 4 4 | 8 ...o ...o ...o ...o | * * * 2 ♦ 0 0 2 0 2 2 | 0 4 4 4 | 8 ------------------------+---------+-------------+---------+--- oo.. oo.. oo.. oo..&#x | 1 1 0 0 | 4 * * * * * | 2 2 0 0 | 4 o.o. o.o. o.o. o.o.&#x | 1 0 1 0 | * 4 * * * * | 2 0 2 0 | 4 o..o o..o o..o o..o&#x | 1 0 0 1 | * * 4 * * * | 0 2 2 0 | 4 .oo. .oo. .oo. .oo.&#x | 0 1 1 0 | * * * 4 * * | 2 0 0 2 | 4 .o.o .o.o .o.o .o.o&#x | 0 1 0 1 | * * * * 4 * | 0 2 0 2 | 4 ..oo ..oo ..oo ..oo&#x | 0 0 1 1 | * * * * * 4 | 0 0 2 2 | 4 ------------------------+---------+-------------+---------+--- ooo. ooo. ooo. ooo.&#x | 1 1 1 0 | 1 1 0 1 0 0 | 8 * * * | 2 oo.o oo.o oo.o oo.o&#x | 1 1 0 1 | 1 0 1 0 1 0 | * 8 * * | 2 o.oo o.oo o.oo o.oo&#x | 1 0 1 1 | 0 1 1 0 0 1 | * * 8 * | 2 .ooo .ooo .ooo .ooo&#x | 0 1 1 1 | 0 0 0 1 1 1 | * * * 8 | 2 ------------------------+---------+-------------+---------+--- oooo oooo oooo oooo&#x ♦ 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 | 16
© |
4 * | 2 2 2 0 | 2 4 2 1 2 1 | 4 4 r4b2 vertices * 4 | 0 2 2 2 | 1 2 1 2 4 2 | 4 4 r2b4 vertices ----+---------+-------------+---- 2 0 | 4 * * * | 1 2 1 0 0 0 | 2 2 red square's sides 1 1 | * 8 * * | 1 1 0 1 1 0 | 3 1 red octagon's sides 1 1 | * * 8 * | 0 1 1 0 1 1 | 1 3 blue octagram's sides 0 2 | * * * 4 | 0 0 0 1 2 1 | 2 2 blue square's sides ----+---------+-------------+---- 2 1 | 1 2 0 0 | 4 * * * * * | 2 0 {(rrr)} 2 1 | 1 1 1 0 | * 8 * * * * | 1 1 {(rrb)} connected to red square's side 2 1 | 1 0 2 0 | * * 4 * * * | 0 2 {(rbb)} connected to red square's side 1 2 | 0 2 0 1 | * * * 4 * * | 2 0 {(rrb)} connected to blue square's side 1 2 | 0 1 1 1 | * * * * 8 * | 1 1 {(rbb)} connected to blue square's side 1 2 | 0 0 2 1 | * * * * * 4 | 0 2 {(bbb)} ----+---------+-------------+---- 2 2 | 1 3 1 1 | 1 1 0 1 1 0 | 8 * tet comprising 4 consec. octagon's vert. 2 2 | 1 1 3 1 | 0 1 1 0 1 1 | * 8 tet comprising 4 consec. octagram's vert. |
© 2004-2025 | top of page |