Acronym | hexaf, hex || gyro hexip |
Name |
hexadecachoral alterfastegium, hex atop gyrated hexip, hex-first rotunda of hax |
Circumradius | sqrt(3)/2 = 0.866025 |
Lace city in approx. ASCII-art |
h where: h = x3o3o *b3o (hex) H H H = o3o3x *b3o (gyro hex) |
Face vector | 24, 144, 344, 352, 155, 27 |
Confer |
|
This segmentopeta is derived from hax as its monostratic segment, in fact its hex-first rotunda. Even though it thus clearly omits all the 8 vertices of its diametrally opposite hex, there is a different and more symmetrical octadiminished hemihexeract as well, which therefore better deserves the according name: odhax.
Incidence matrix according to Dynkin symbol
ox xo3oo3oo *c3ox&#x → height = 1/2
(hex || gyro hexip)
o. o.3o.3o. *c3o. | 8 * ♦ 6 8 0 0 | 12 4 24 12 0 0 | 4 4 12 6 24 12 8 0 0 0 | 1 12 6 4 8 8 2 0 0 0 | 4 4 1 2 0
.o .o3.o3.o *c3.o | * 16 | 0 4 1 6 | 0 4 6 12 6 12 | 0 0 6 12 4 6 12 12 4 4 | 0 4 6 12 1 4 4 4 4 1 | 1 4 4 1 1
---------------------+------+------------+-------------------+-----------------------------+---------------------------+----------
.. x. .. .. .. | 2 0 | 24 * * * ♦ 4 0 4 0 0 0 | 2 2 2 0 8 2 0 0 0 0 | 1 4 1 0 4 4 0 0 0 0 | 2 2 0 2 0
oo oo3oo3oo *c3oo&#x | 1 1 | * 64 * * | 0 1 3 3 0 0 | 0 0 3 3 3 3 3 0 0 0 | 0 3 3 3 1 3 1 0 0 0 | 1 3 1 1 0
.x .. .. .. .. | 0 2 | * * 8 * | 0 4 0 0 6 0 | 0 0 6 12 0 0 0 12 0 0 | 0 4 6 12 0 0 0 4 4 0 | 1 4 4 0 1
.. .. .. .. .x | 0 2 | * * * 48 | 0 0 0 2 1 4 | 0 0 0 2 0 1 4 4 2 2 | 0 0 1 4 0 2 2 2 2 1 | 0 2 2 1 1
---------------------+------+------------+-------------------+-----------------------------+---------------------------+----------
.. x.3o. .. .. | 3 0 | 3 0 0 0 | 32 * * * * * | 1 1 0 0 2 0 0 0 0 0 | 1 1 0 0 2 2 0 0 0 0 | 1 1 0 2 0
ox .. .. .. ..&#x | 1 2 | 0 2 1 0 | * 32 * * * * | 0 0 3 3 0 0 0 0 0 0 | 0 3 3 3 0 0 0 0 0 0 | 1 3 1 0 0
.. xo .. .. ..&#x | 2 1 | 1 2 0 0 | * * 96 * * * | 0 0 1 0 2 1 0 0 0 0 | 0 2 1 0 1 2 0 0 0 0 | 1 2 0 1 0
.. .. .. .. ox&#x | 1 2 | 0 2 0 1 | * * * 96 * * | 0 0 0 1 0 1 2 0 0 0 | 0 0 1 2 0 2 1 0 0 0 | 0 2 1 1 0
.x .. .. .. .x | 0 4 | 0 0 2 2 | * * * * 24 * | 0 0 0 2 0 0 0 4 0 0 | 0 0 1 4 0 0 0 2 2 0 | 0 2 2 0 1
.. .. .o .. *c3.x | 0 3 | 0 0 0 3 | * * * * * 64 | 0 0 0 0 0 0 1 1 1 1 | 0 0 0 1 0 1 1 1 1 1 | 0 1 1 1 1
---------------------+------+------------+-------------------+-----------------------------+---------------------------+----------
.. x.3o.3o. .. ♦ 4 0 | 6 0 0 0 | 4 0 0 0 0 0 | 8 * * * * * * * * * | 1 0 0 0 2 0 0 0 0 0 | 1 0 0 2 0
.. x.3o. .. *c3o. ♦ 4 0 | 6 0 0 0 | 4 0 0 0 0 0 | * 8 * * * * * * * * | 1 0 0 0 0 2 0 0 0 0 | 0 1 0 2 0
ox xo .. .. ..&#x ♦ 2 2 | 1 4 1 0 | 0 2 2 0 0 0 | * * 48 * * * * * * * | 0 2 1 0 0 0 0 0 0 0 | 1 2 0 0 0
ox .. .. .. ox&#x ♦ 1 4 | 0 4 2 2 | 0 2 0 2 1 0 | * * * 48 * * * * * * | 0 0 1 2 0 0 0 0 0 0 | 0 2 1 0 0
.. xo3oo .. ..&#x ♦ 3 1 | 3 3 0 0 | 1 0 3 0 0 0 | * * * * 64 * * * * * | 0 1 0 0 1 1 0 0 0 0 | 1 1 0 1 0
.. xo .. .. ox&#x ♦ 2 2 | 1 4 0 1 | 0 0 2 2 0 0 | * * * * * 48 * * * * | 0 0 1 0 0 2 0 0 0 0 | 0 2 0 1 0
.. .. oo .. *c3ox&#x ♦ 1 3 | 0 3 0 3 | 0 0 0 3 0 1 | * * * * * * 64 * * * | 0 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0
.x .. .o .. *c3.x ♦ 0 6 | 0 0 3 6 | 0 0 0 0 3 2 | * * * * * * * 32 * * | 0 0 0 1 0 0 0 1 1 0 | 0 1 1 0 1
.. .o3.o .. *c3.x ♦ 0 4 | 0 0 0 6 | 0 0 0 0 0 4 | * * * * * * * * 16 * | 0 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1
.. .. .o3.o *c3.x ♦ 0 4 | 0 0 0 6 | 0 0 0 0 0 4 | * * * * * * * * * 16 | 0 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1
---------------------+------+------------+-------------------+-----------------------------+---------------------------+----------
.. x.3o.3o. *c3o. ♦ 8 0 | 24 0 0 0 | 32 0 0 0 0 0 | 8 8 0 0 0 0 0 0 0 0 | 1 * * * * * * * * * | 0 0 0 2 0
ox xo3oo .. ..&#x ♦ 3 2 | 3 6 1 0 | 1 3 6 0 0 0 | 0 0 3 0 2 0 0 0 0 0 | * 32 * * * * * * * * | 1 1 0 0 0
ox xo .. .. ox&#x ♦ 2 4 | 1 8 2 2 | 0 4 4 4 1 0 | 0 0 2 2 0 2 0 0 0 0 | * * 24 * * * * * * * | 0 2 0 0 0
ox .. oo .. *c3ox&#x ♦ 1 6 | 0 6 3 6 | 0 3 0 6 3 2 | 0 0 0 3 0 0 2 1 0 0 | * * * 32 * * * * * * | 0 1 1 0 0
.. xo3oo3oo ..&#x ♦ 4 1 | 6 4 0 0 | 4 0 6 0 0 0 | 1 0 0 0 4 0 0 0 0 0 | * * * * 16 * * * * * | 1 0 0 1 0
.. xo3oo .. *c3ox&#x ♦ 4 4 | 6 12 0 6 | 4 0 12 12 0 4 | 0 1 0 0 4 6 4 0 1 0 | * * * * * 16 * * * * | 0 1 0 1 0
.. .. oo3oo *c3ox&#x ♦ 1 4 | 0 4 0 6 | 0 0 0 6 0 4 | 0 0 0 0 0 0 4 0 0 1 | * * * * * * 16 * * * | 0 0 1 1 0
.x .o3.o .. *c3.x ♦ 0 8 | 0 0 4 12 | 0 0 0 0 6 8 | 0 0 0 0 0 0 0 4 2 0 | * * * * * * * 8 * * | 0 1 0 0 1
.x .. .o3.o *c3.x ♦ 0 8 | 0 0 4 12 | 0 0 0 0 6 8 | 0 0 0 0 0 0 0 4 0 2 | * * * * * * * * 8 * | 0 0 1 0 1
.. .o3.o3.o *c3.x ♦ 0 8 | 0 0 0 24 | 0 0 0 0 0 32 | 0 0 0 0 0 0 0 0 8 8 | * * * * * * * * * 2 | 0 0 0 1 1
---------------------+------+------------+-------------------+-----------------------------+---------------------------+----------
ox xo3oo3oo ..&#x ♦ 4 2 | 6 8 1 0 | 4 4 12 0 0 0 | 1 0 6 0 8 0 0 0 0 0 | 0 4 0 0 2 0 0 0 0 0 | 8 * * * *
ox xo3oo .. *c3ox&#x ♦ 4 8 | 6 24 4 12 | 4 12 24 24 6 8 | 0 1 12 12 8 12 8 4 2 0 | 0 4 6 4 0 2 0 1 0 0 | * 8 * * *
ox .. oo3oo *c3ox&#x ♦ 1 8 | 0 8 4 12 | 0 4 0 12 6 8 | 0 0 0 6 0 0 8 4 0 2 | 0 0 0 4 0 0 2 0 1 0 | * * 8 * *
.. xo3oo3oo *c3ox&#x ♦ 8 8 | 24 32 0 24 | 32 0 48 48 0 32 | 8 8 0 0 32 24 32 0 8 8 | 1 0 0 0 8 8 8 0 0 1 | * * * 2 *
.x .o3.o3.o *c3.x ♦ 0 16 | 0 0 8 48 | 0 0 0 0 24 64 | 0 0 0 0 0 0 0 32 16 16 | 0 0 0 0 0 0 0 8 8 2 | * * * * 1
© 2004-2024 | top of page |