Acronym tethop
Name tetrahedron-heptapeton duoprism,
vertex figure of tru
Circumradius sqrt(45/56) = 0.896421
Volume sqrt(14)/69120 = 0.000054133
Face vector 28, 126, 294, 441, 455, 329, 165, 55, 11
Confer
general polytopal classes:
Wythoffian polyyotta  

Incidence matrix according to Dynkin symbol

x3o3o x3o3o3o3o3o

. . . . . . . . . | 28 |  3  6 |  3  18  15 | 1 18  45  20 |  6  45  60 15 | 15  60  45  6 | 20 45 18 1 | 15 18 3 | 6 3
------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+----
x . . . . . . . . |  2 | 42  * |  2   6   0 | 1 12  15   0 |  6  30  20  0 | 15  40  15  0 | 20 30  6 0 | 15 12 1 | 6 2
. . . x . . . . . |  2 |  * 84 |  0   3   5 | 0  3  15  10 |  1  15  30 10 |  5  30  30  5 | 10 30 15 1 | 10 15 3 | 5 3
------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+----
x3o . . . . . . . |  3 |  3  0 | 28   *   * | 1  6   0   0 |  6  15   0  0 | 15  20   0  0 | 20 15  0 0 | 15  6 0 | 6 1
x . . x . . . . . |  4 |  2  2 |  * 126   * | 0  2   5   0 |  1  10  10  0 |  5  20  10  0 | 10 20  5 0 | 10 10 1 | 5 2
. . . x3o . . . . |  3 |  0  3 |  *   * 140 | 0  0   3   4 |  0   3  12  6 |  1  12  18  4 |  4 18 12 1 |  6 12 3 | 4 3
------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+----
x3o3o . . . . . .   4 |  6  0 |  4   0   0 | 7  *   *   *   6   0   0  0 | 15   0   0  0 | 20  0  0 0 | 15  0 0 | 6 0
x3o . x . . . . .   6 |  6  3 |  2   3   0 | * 84   *   * |  1   5   0  0 |  5  10   0  0 | 10 10  0 0 | 10  5 0 | 5 1
x . . x3o . . . .   6 |  3  6 |  0   3   2 | *  * 210   * |  0   2   4  0 |  1   8   6  0 |  4 12  4 0 |  6  8 1 | 4 2
. . . x3o3o . . .   4 |  0  6 |  0   0   4 | *  *   * 140 |  0   0   3  3 |  0   3   9  3 |  1  9  9 1 |  3  9 3 | 3 3
------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+----
x3o3o x . . . . .   8 | 12  4 |  8   6   0 | 2  4   0   0 | 21   *   *  *   5   0   0  0 | 10  0  0 0 | 10  0 0 | 5 0
x3o . x3o . . . .   9 |  9  9 |  3   9   3 | 0  3   3   0 |  * 140   *  * |  1   4   0  0 |  4  6  0 0 |  6  4 0 | 4 1
x . . x3o3o . . .   8 |  4 12 |  0   6   8 | 0  0   4   2 |  *   * 210  * |  0   2   3  0 |  1  6  3 0 |  3  6 1 | 3 2
. . . x3o3o3o . .   5 |  0 10 |  0   0  10 | 0  0   0   5 |  *   *   * 84 |  0   0   3  2 |  0  3  6 1 |  1  6 3 | 2 3
------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+----
x3o3o x3o . . . .  12 | 18 12 | 12  18   4 | 3 12   6   0 |  3   4   0  0 | 35   *   *  *   4  0  0 0 |  6  0 0 | 4 0
x3o . x3o3o . . .  12 | 12 18 |  4  18  12 | 0  6  12   3 |  0   4   3  0 |  * 140   *  * |  1  3  0 0 |  3  3 0 | 3 1
x . . x3o3o3o . .  10 |  5 20 |  0  10  20 | 0  0  10  10 |  0   0   5  2 |  *   * 126  * |  0  2  2 0 |  1  4 1 | 2 2
. . . x3o3o3o3o .   6 |  0 15 |  0   0  20 | 0  0   0  15 |  0   0   0  6 |  *   *   * 28 |  0  0  3 1 |  0  3 3 | 1 3
------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+----
x3o3o x3o3o . . .  16 | 24 24 | 16  36  16 | 4 24  24   4 |  6  16   6  0 |  4   4   0  0 | 35  *  * * |  3  0 0 | 3 0
x3o . x3o3o3o . .  15 | 15 30 |  5  30  30 | 0 10  30  15 |  0  10  15  3 |  0   5   3  0 |  * 84  * * |  1  2 0 | 2 1
x . . x3o3o3o3o .  12 |  6 30 |  0  15  40 | 0  0  20  30 |  0   0  15 12 |  0   0   6  2 |  *  * 42 * |  0  2 1 | 1 2
. . . x3o3o3o3o3o   7 |  0 21 |  0   0  35 | 0  0   0  35 |  0   0   0 21 |  0   0   0  7 |  *  *  * 4 |  0  0 3 | 0 3
------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+----
x3o3o x3o3o3o . .  20 | 30 40 | 20  60  40 | 5 40  60  20 | 10  40  30  4 | 10  20   6  0 |  5  4  0 0 | 21  * * | 2 0
x3o . x3o3o3o3o .  18 | 18 45 |  6  45  60 | 0 15  60  45 |  0  20  45 18 |  0  15  18  3 |  0  6  3 0 |  * 28 * | 1 1
x . . x3o3o3o3o3o  14 |  7 42 |  0  21  70 | 0  0  35  70 |  0   0  35 42 |  0   0  21 14 |  0  0  7 2 |  *  * 6 | 0 2
------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+----
x3o3o x3o3o3o3o .  24 | 36 60 | 24  90  80 | 6 60 120  60 | 15  80  90 24 | 20  60  36  4 | 15 24  6 0 |  6  4 0 | 7 *
x3o . x3o3o3o3o3o  21 | 21 63 |  7  63 105 | 0 21 105 105 |  0  35 105 63 |  0  35  63 21 |  0 21 21 3 |  0  7 3 | * 4

© 2004-2024
top of page