Acronym | tethop |
Name |
tetrahedron-heptapeton duoprism, vertex figure of tru |
Circumradius | sqrt(45/56) = 0.896421 |
Volume | sqrt(14)/69120 = 0.000054133 |
Face vector | 28, 126, 294, 441, 455, 329, 165, 55, 11 |
Confer |
|
Incidence matrix according to Dynkin symbol
x3o3o x3o3o3o3o3o . . . . . . . . . | 28 | 3 6 | 3 18 15 | 1 18 45 20 | 6 45 60 15 | 15 60 45 6 | 20 45 18 1 | 15 18 3 | 6 3 ------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+---- x . . . . . . . . | 2 | 42 * | 2 6 0 | 1 12 15 0 | 6 30 20 0 | 15 40 15 0 | 20 30 6 0 | 15 12 1 | 6 2 . . . x . . . . . | 2 | * 84 | 0 3 5 | 0 3 15 10 | 1 15 30 10 | 5 30 30 5 | 10 30 15 1 | 10 15 3 | 5 3 ------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+---- x3o . . . . . . . | 3 | 3 0 | 28 * * | 1 6 0 0 | 6 15 0 0 | 15 20 0 0 | 20 15 0 0 | 15 6 0 | 6 1 x . . x . . . . . | 4 | 2 2 | * 126 * | 0 2 5 0 | 1 10 10 0 | 5 20 10 0 | 10 20 5 0 | 10 10 1 | 5 2 . . . x3o . . . . | 3 | 0 3 | * * 140 | 0 0 3 4 | 0 3 12 6 | 1 12 18 4 | 4 18 12 1 | 6 12 3 | 4 3 ------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+---- x3o3o . . . . . . ♦ 4 | 6 0 | 4 0 0 | 7 * * * ♦ 6 0 0 0 | 15 0 0 0 | 20 0 0 0 | 15 0 0 | 6 0 x3o . x . . . . . ♦ 6 | 6 3 | 2 3 0 | * 84 * * | 1 5 0 0 | 5 10 0 0 | 10 10 0 0 | 10 5 0 | 5 1 x . . x3o . . . . ♦ 6 | 3 6 | 0 3 2 | * * 210 * | 0 2 4 0 | 1 8 6 0 | 4 12 4 0 | 6 8 1 | 4 2 . . . x3o3o . . . ♦ 4 | 0 6 | 0 0 4 | * * * 140 | 0 0 3 3 | 0 3 9 3 | 1 9 9 1 | 3 9 3 | 3 3 ------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+---- x3o3o x . . . . . ♦ 8 | 12 4 | 8 6 0 | 2 4 0 0 | 21 * * * ♦ 5 0 0 0 | 10 0 0 0 | 10 0 0 | 5 0 x3o . x3o . . . . ♦ 9 | 9 9 | 3 9 3 | 0 3 3 0 | * 140 * * | 1 4 0 0 | 4 6 0 0 | 6 4 0 | 4 1 x . . x3o3o . . . ♦ 8 | 4 12 | 0 6 8 | 0 0 4 2 | * * 210 * | 0 2 3 0 | 1 6 3 0 | 3 6 1 | 3 2 . . . x3o3o3o . . ♦ 5 | 0 10 | 0 0 10 | 0 0 0 5 | * * * 84 | 0 0 3 2 | 0 3 6 1 | 1 6 3 | 2 3 ------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+---- x3o3o x3o . . . . ♦ 12 | 18 12 | 12 18 4 | 3 12 6 0 | 3 4 0 0 | 35 * * * ♦ 4 0 0 0 | 6 0 0 | 4 0 x3o . x3o3o . . . ♦ 12 | 12 18 | 4 18 12 | 0 6 12 3 | 0 4 3 0 | * 140 * * | 1 3 0 0 | 3 3 0 | 3 1 x . . x3o3o3o . . ♦ 10 | 5 20 | 0 10 20 | 0 0 10 10 | 0 0 5 2 | * * 126 * | 0 2 2 0 | 1 4 1 | 2 2 . . . x3o3o3o3o . ♦ 6 | 0 15 | 0 0 20 | 0 0 0 15 | 0 0 0 6 | * * * 28 | 0 0 3 1 | 0 3 3 | 1 3 ------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+---- x3o3o x3o3o . . . ♦ 16 | 24 24 | 16 36 16 | 4 24 24 4 | 6 16 6 0 | 4 4 0 0 | 35 * * * | 3 0 0 | 3 0 x3o . x3o3o3o . . ♦ 15 | 15 30 | 5 30 30 | 0 10 30 15 | 0 10 15 3 | 0 5 3 0 | * 84 * * | 1 2 0 | 2 1 x . . x3o3o3o3o . ♦ 12 | 6 30 | 0 15 40 | 0 0 20 30 | 0 0 15 12 | 0 0 6 2 | * * 42 * | 0 2 1 | 1 2 . . . x3o3o3o3o3o ♦ 7 | 0 21 | 0 0 35 | 0 0 0 35 | 0 0 0 21 | 0 0 0 7 | * * * 4 | 0 0 3 | 0 3 ------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+---- x3o3o x3o3o3o . . ♦ 20 | 30 40 | 20 60 40 | 5 40 60 20 | 10 40 30 4 | 10 20 6 0 | 5 4 0 0 | 21 * * | 2 0 x3o . x3o3o3o3o . ♦ 18 | 18 45 | 6 45 60 | 0 15 60 45 | 0 20 45 18 | 0 15 18 3 | 0 6 3 0 | * 28 * | 1 1 x . . x3o3o3o3o3o ♦ 14 | 7 42 | 0 21 70 | 0 0 35 70 | 0 0 35 42 | 0 0 21 14 | 0 0 7 2 | * * 6 | 0 2 ------------------+----+-------+------------+--------------+---------------+---------------+------------+---------+---- x3o3o x3o3o3o3o . ♦ 24 | 36 60 | 24 90 80 | 6 60 120 60 | 15 80 90 24 | 20 60 36 4 | 15 24 6 0 | 6 4 0 | 7 * x3o . x3o3o3o3o3o ♦ 21 | 21 63 | 7 63 105 | 0 21 105 105 | 0 35 105 63 | 0 35 63 21 | 0 21 21 3 | 0 7 3 | * 4
© 2004-2025 | top of page |