Acronym | ipe, K-4.36 |
Name |
icosahedron prism, vertex figure of rectified hyperbolic pentachoric honeycomb |
Segmentochoron display / VRML |
|
Cross sections |
© |
Circumradius | sqrt[(7+sqrt(5))/8] = 1.074481 |
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex – other uniform polychoral member: gaddip) |
Dihedral angles | |
Face vector | 24, 72, 70, 22 |
Confer |
|
External links |
As abstract polytope ipe is isomorphic to gipe, thereby replacing ike by gike.
Incidence matrix according to Dynkin symbol
x x3o5o . . . . | 24 | 1 5 | 5 5 | 5 1 --------+----+-------+-------+----- x . . . | 2 | 12 * | 5 0 | 5 0 . x . . | 2 | * 60 | 1 2 | 2 1 --------+----+-------+-------+----- x x . . | 4 | 2 2 | 30 * | 2 0 . x3o . | 3 | 0 3 | * 40 | 1 1 --------+----+-------+-------+----- x x3o . ♦ 6 | 3 6 | 3 2 | 20 * . x3o5o ♦ 12 | 0 30 | 0 20 | * 2
x x3o5/4o . . . . | 24 | 1 5 | 5 5 | 5 1 ----------+----+-------+-------+----- x . . . | 2 | 12 * | 5 0 | 5 0 . x . . | 2 | * 60 | 1 2 | 2 1 ----------+----+-------+-------+----- x x . . | 4 | 2 2 | 30 * | 2 0 . x3o . | 3 | 0 3 | * 40 | 1 1 ----------+----+-------+-------+----- x x3o . ♦ 6 | 3 6 | 3 2 | 20 * . x3o5/4o ♦ 12 | 0 30 | 0 20 | * 2
x x3/2o5o . . . . | 24 | 1 5 | 5 5 | 5 1 ----------+----+-------+-------+----- x . . . | 2 | 12 * | 5 0 | 5 0 . x . . | 2 | * 60 | 1 2 | 2 1 ----------+----+-------+-------+----- x x . . | 4 | 2 2 | 30 * | 2 0 . x3/2o . | 3 | 0 3 | * 40 | 1 1 ----------+----+-------+-------+----- x x3/2o . ♦ 6 | 3 6 | 3 2 | 20 * . x3/2o5o ♦ 12 | 0 30 | 0 20 | * 2
x x3/2o5/4o . . . . | 24 | 1 5 | 5 5 | 5 1 ------------+----+-------+-------+----- x . . . | 2 | 12 * | 5 0 | 5 0 . x . . | 2 | * 60 | 1 2 | 2 1 ------------+----+-------+-------+----- x x . . | 4 | 2 2 | 30 * | 2 0 . x3/2o . | 3 | 0 3 | * 40 | 1 1 ------------+----+-------+-------+----- x x3/2o . ♦ 6 | 3 6 | 3 2 | 20 * . x3/2o5/4o ♦ 12 | 0 30 | 0 20 | * 2
x s3s4o . demi( . . . ) | 24 | 1 1 4 | 1 4 2 3 | 2 3 1 ----------------+----+----------+------------+------- x demi( . . . ) | 2 | 12 * * | 1 4 0 0 | 2 3 0 . . s4o | 2 | * 12 * | 1 0 0 2 | 0 2 1 . sefa( s3s . ) | 2 | * * 48 | 0 1 1 1 | 1 1 1 ----------------+----+----------+------------+------- x . s4o | 4 | 2 2 0 | 6 * * * | 0 2 0 x sefa( s3s . ) ♦ 4 | 2 0 2 | * 24 * * | 1 1 0 . s3s . ♦ 3 | 0 0 3 | * * 16 * | 1 0 1 . sefa( s3s4o ) | 3 | 0 1 2 | * * * 24 | 0 1 1 ----------------+----+----------+------------+------- x s3s . ♦ 6 | 3 0 6 | 0 3 2 0 | 8 * * x sefa( s3s4o ) ♦ 6 | 3 2 4 | 1 2 0 2 | * 12 * . s3s4o ♦ 12 | 0 6 24 | 0 0 8 12 | * * 2
x s3s3s . demi( . . . ) | 24 | 1 1 2 2 | 1 2 2 1 1 3 | 1 1 3 1 ----------------+----+-------------+----------------+--------- x demi( . . . ) | 2 | 12 * * * | 1 2 2 0 0 0 | 1 1 3 0 . s 2 s | 2 | * 12 * * | 1 0 0 0 0 2 | 0 0 2 1 . sefa( s3s . ) | 2 | * * 24 * | 0 1 0 1 0 1 | 1 0 1 1 . sefa( . s3s ) | 2 | * * * 24 | 0 0 1 0 1 1 | 0 1 1 1 ----------------+----+-------------+----------------+--------- x s 2 s | 4 | 2 2 0 0 | 6 * * * * * | 0 0 2 0 x sefa( s3s . ) | 4 | 2 0 2 0 | * 12 * * * * | 1 0 1 0 x sefa( . s3s ) | 4 | 2 0 0 2 | * * 12 * * * | 0 1 1 0 . s3s . ♦ 3 | 0 0 3 0 | * * * 8 * * | 1 0 0 1 . . s3s ♦ 3 | 0 0 0 3 | * * * * 8 * | 0 1 0 1 . sefa( s3s3s ) | 3 | 0 1 1 1 | * * * * * 24 | 0 0 1 1 ----------------+----+-------------+----------------+--------- x s3s . ♦ 6 | 3 0 6 0 | 0 3 0 2 0 0 | 4 * * * x . s3s ♦ 6 | 3 0 0 6 | 0 0 3 0 2 0 | * 4 * * x sefa( s3s3s ) ♦ 6 | 3 2 2 2 | 1 1 1 0 0 2 | * * 12 * . s3s3s ♦ 12 | 0 6 12 12 | 0 0 0 4 4 12 | * * * 2
x2s3s4o demi( . . . . ) | 24 | 1 1 4 | 1 2 4 3 | 2 1 3 ----------------+----+----------+------------+------- demi( x . . . ) | 2 | 12 * * | 1 0 4 0 | 2 0 3 . . s4o | 2 | * 12 * | 1 0 0 2 | 0 1 2 sefa( . s3s . ) | 2 | * * 48 | 0 1 1 1 | 1 1 1 ----------------+----+----------+------------+------- x 2 s4o | 4 | 2 2 0 | 6 * * * | 0 0 2 . s3s . ♦ 3 | 0 0 3 | * 16 * * | 1 1 0 sefa( x2s3s . ) ♦ 4 | 2 0 2 | * * 24 * | 1 0 1 sefa( . s3s4o ) | 3 | 0 1 2 | * * * 24 | 0 1 1 ----------------+----+----------+------------+------- x2s3s . ♦ 6 | 3 0 6 | 0 2 3 0 | 8 * * . s3s4o ♦ 12 | 0 6 24 | 0 8 0 12 | * 2 * sefa( x2s3s4o ) ♦ 6 | 3 2 4 | 1 0 2 2 | * * 12 starting figure: x x3x4o
x2s3s3s demi( . . . . ) | 24 | 1 1 2 2 | 1 1 1 2 2 3 | 1 1 1 3 ----------------+----+-------------+----------------+--------- demi( x . . . ) | 2 | 12 * * * | 1 0 0 2 2 0 | 1 1 0 3 . s 2 s | 2 | * 12 * * | 1 0 0 0 0 2 | 0 0 1 2 sefa( . s3s . ) | 2 | * * 24 * | 0 1 0 1 0 1 | 1 0 1 1 sefa( . . s3s ) | 2 | * * * 24 | 0 0 1 0 1 1 | 0 1 1 1 ----------------+----+-------------+----------------+--------- x2s 2 s | 4 | 2 2 0 0 | 6 * * * * * | 0 0 0 2 . s3s . ♦ 3 | 0 0 3 0 | * 8 * * * * | 1 0 1 0 . . s3s ♦ 3 | 0 0 0 3 | * * 8 * * * | 0 1 1 0 sefa( x2s3s . ) | 4 | 2 0 2 0 | * * * 12 * * | 1 0 0 1 sefa( x 2 s3s ) | 4 | 2 0 0 2 | * * * * 12 * | 0 1 0 1 sefa( . s3s3s ) | 3 | 0 1 1 1 | * * * * * 24 | 0 0 1 1 ----------------+----+-------------+----------------+--------- x2s3s . ♦ 6 | 3 0 6 0 | 0 2 0 3 0 0 | 4 * * * x 2 s3s ♦ 6 | 3 0 0 6 | 0 0 2 0 3 0 | * 4 * * . s3s3s ♦ 12 | 0 6 12 12 | 0 4 4 0 0 12 | * * 2 * sefa( x2s3s3s ) ♦ 6 | 3 2 2 2 | 1 0 0 1 1 2 | * * * 12 starting figure: x x3x3x
xx3oo5oo&#x → height = 1
(ike || ike)
o.3o.5o. | 12 * | 5 1 0 | 5 5 0 | 1 5 0
.o3.o5.o | * 12 | 0 1 5 | 0 5 5 | 0 5 1
------------+-------+----------+----------+-------
x. .. .. | 2 0 | 30 * * | 2 1 0 | 1 2 0
oo3oo5oo&#x | 1 1 | * 12 * | 0 5 0 | 0 5 0
.x .. .. | 0 2 | * * 30 | 0 1 2 | 0 2 1
------------+-------+----------+----------+-------
x.3o. .. | 3 0 | 3 0 0 | 20 * * | 1 1 0
xx .. ..&#x | 2 2 | 1 2 1 | * 30 * | 0 2 0
.x3.o .. | 0 3 | 0 0 3 | * * 20 | 0 1 1
------------+-------+----------+----------+-------
x.3o.5o. ♦ 12 0 | 30 0 0 | 20 0 0 | 1 * *
xx3oo ..&#x ♦ 3 3 | 3 3 3 | 1 3 1 | * 20 *
.x3.o5.o ♦ 0 12 | 0 0 30 | 0 0 20 | * * 1
s3s3s || s3s3s → height = 1 (ike || ike) demi( . . . ) | 12 * | 1 2 2 1 0 0 0 | 1 1 3 1 2 2 0 0 0 | 1 1 1 3 0 demi( . . . ) | * 12 | 0 0 0 1 1 2 2 | 0 0 0 1 2 2 1 1 3 | 0 1 1 3 1 ------------------------------+-------+--------------------+-----------------------+----------- s 2 s | 2 0 | 6 * * * * * * | 0 0 2 1 0 0 0 0 0 | 1 0 0 2 0 sefa( s3s . ) | 2 0 | * 12 * * * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0 sefa( . s3s ) | 2 0 | * * 12 * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0 demi( . . . ) || demi( . . . ) | 1 1 | * * * 12 * * * | 0 0 0 1 2 2 0 0 0 | 0 1 1 3 0 s 2 s | 0 2 | * * * * 6 * * | 0 0 0 1 0 0 0 0 2 | 0 0 0 2 1 sefa( s3s . ) | 0 2 | * * * * * 12 * | 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1 sefa( . s3s ) | 0 2 | * * * * * * 12 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1 ------------------------------+-------+--------------------+-----------------------+----------- s3s . ♦ 3 0 | 0 3 0 0 0 0 0 | 4 * * * * * * * * | 1 1 0 0 0 . s3s ♦ 3 0 | 0 0 3 0 0 0 0 | * 4 * * * * * * * | 1 0 1 0 0 sefa( s3s3s ) | 3 0 | 1 1 1 0 0 0 0 | * * 12 * * * * * * | 1 0 0 1 0 s 2 s || s 2 s | 2 2 | 1 0 0 2 1 0 0 | * * * 6 * * * * * | 0 0 0 2 0 sefa( s3s . ) || sefa( s3s . ) | 2 2 | 0 1 0 2 0 1 0 | * * * * 12 * * * * | 0 1 0 1 0 sefa( . s3s ) || sefa( . s3s ) | 2 2 | 0 0 1 2 0 0 1 | * * * * * 12 * * * | 0 0 1 1 0 s3s . ♦ 0 3 | 0 0 0 0 0 3 0 | * * * * * * 4 * * | 0 1 0 0 1 . s3s ♦ 0 3 | 0 0 0 0 0 0 3 | * * * * * * * 4 * | 0 0 1 0 1 sefa( s3s3s ) | 0 3 | 0 0 0 0 1 1 1 | * * * * * * * * 12 | 0 0 0 1 1 ------------------------------+-------+--------------------+-----------------------+----------- s3s3s ♦ 12 0 | 6 12 12 0 0 0 0 | 4 4 12 0 0 0 0 0 0 | 1 * * * * s3s . || s3s . ♦ 3 3 | 0 3 0 3 0 3 0 | 1 0 0 0 3 0 1 0 0 | * 4 * * * . s3s || . s3s ♦ 3 3 | 0 0 3 3 0 0 3 | 0 1 0 0 0 3 0 1 0 | * * 4 * * sefa( s3s3s ) || sefa( s3s3s ) ♦ 3 3 | 1 1 1 3 1 1 1 | 0 0 1 1 1 1 0 0 1 | * * * 12 * s3s3s ♦ 0 12 | 0 0 0 0 6 12 12 | 0 0 0 0 0 0 4 4 12 | * * * * 1
© 2004-2025 | top of page |