Acronym triddip, K-4.10
Name triangle-triangle duoprism,
triangle - trip wedge,
vertex figure of dot,
Delone cell of lattice A2×A2,
equatorial cross-section of trig-first rix
 
 
 ©    ©
 ©
Segmentochoron display
Circumradius sqrt(2/3) = 0.816497
Inradius 1/sqrt(12) = 0.288675
Vertex figure
 ©
Coordinates n, εm)/sqrt(3)           n,m ∈ {0,1,2}
where ε = exp(2πi/3) and R4=C2
Volume 3/16 = 0.1875
Surface sqrt(27)/2 = 2.598076
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Dihedral angles
Dual triddit
Face vector 9, 18, 15, 6
Confer
general duoprisms:
3,n-dip   n,n-dip   n,m-dip  
ambification:
retdip  
general polytopal classes:
Wythoffian polychora   noble polytopes   segmentochora   lace simplices  
analogs:
simplex duoprism Sn×Sn  
External
links
hedrondude   wikipedia   polytopewiki   quickfur

Incidence matrix according to Dynkin symbol

x3o x3o

. . . . | 9  2 2 | 1 4 1 | 2 2
--------+---+-----+-------+----
x . . . | 2 | 9 * | 1 2 0 | 2 1
. . x . | 2 | * 9 | 0 2 1 | 1 2
--------+---+-----+-------+----
x3o . . | 3 | 3 0 | 3 * * | 2 0
x . x . | 4 | 2 2 | * 9 * | 1 1
. . x3o | 3 | 0 3 | * * 3 | 0 2
--------+---+-----+-------+----
x3o x .  6 | 6 3 | 2 3 0 | 3 *
x . x3o  6 | 3 6 | 0 3 2 | * 3
or
. . . .    | 9   4 | 2 4 | 4
-----------+---+----+-----+--
x . . .  & | 2 | 18 | 1 2 | 3
-----------+---+----+-----+--
x3o . .  & | 3 |  3 | 6 * | 2
x . x .    | 4 |  4 | * 9 | 2
-----------+---+----+-----+--
x3o x .  &  6 |  9 | 2 3 | 6

s3s x3o

demi( . . ) . . | 9  2 2 | 1 1 4 | 2 2
----------------+---+-----+-------+----
demi( . . ) x . | 2 | 9 * | 1 0 2 | 1 2
sefa( s3s ) . . | 2 | * 9 | 0 1 2 | 2 1
----------------+---+-----+-------+----
demi( . . ) x3o | 3 | 3 0 | 3 * * | 0 2
      s3s   . . | 3 | 0 3 | * 3 * | 2 0
sefa( s3s ) x . | 4 | 2 2 | * * 9 | 1 1
----------------+---+-----+-------+----
      s3s   x .  6 | 3 6 | 0 2 3 | 3 *
sefa( s3s ) x3o  6 | 6 3 | 2 0 3 | * 3

s3s2x3o

demi( . . . . ) | 9  2 2 | 1 1 4 | 2 2
----------------+---+-----+-------+----
demi( . . x . ) | 2 | 9 * | 1 0 2 | 1 2
sefa( s3s . . ) | 2 | * 9 | 0 1 2 | 2 1
----------------+---+-----+-------+----
demi( . . x3o ) | 3 | 3 0 | 3 * * | 0 2
      s3s . .   | 3 | 0 3 | * 3 * | 2 0
sefa( s3s2x . ) | 4 | 2 2 | * * 9 | 1 1
----------------+---+-----+-------+----
      s3s2x .    6 | 3 6 | 0 2 3 | 3 *
sefa( s3s2x3o )  6 | 6 3 | 2 0 3 | * 3

starting figure: x3x x3o

ox xx3oo&#x   → height = sqrt(3)/2 = 0.866025
({3} || trip)

o. o.3o.    | 3 *  2 2 0 0 | 1 1 4 0 0 | 2 2 0
.o .o3.o    | * 6  0 1 1 2 | 0 1 2 2 1 | 2 1 1
------------+-----+---------+-----------+------
.. x. ..    | 2 0 | 3 * * * | 1 0 2 0 0 | 1 2 0
oo oo3oo&#x | 1 1 | * 6 * * | 0 1 2 0 0 | 2 1 0
.x .. ..    | 0 2 | * * 3 * | 0 1 0 2 0 | 2 0 1
.. .x ..    | 0 2 | * * * 6 | 0 0 1 1 1 | 1 1 1
------------+-----+---------+-----------+------
.. x.3o.    | 3 0 | 3 0 0 0 | 1 * * * * | 0 2 0
ox .. ..&#x | 1 2 | 0 2 1 0 | * 3 * * * | 2 0 0
.. xx ..&#x | 2 2 | 1 2 0 1 | * * 6 * * | 1 1 0
.x .x ..    | 0 4 | 0 0 2 2 | * * * 3 * | 1 0 1
.. .x3.o    | 0 3 | 0 0 0 3 | * * * * 2 | 0 1 1
------------+-----+---------+-----------+------
ox xx ..&#x  2 4 | 1 4 2 2 | 0 2 2 1 0 | 3 * *
.. xx3oo&#x  3 3 | 3 3 0 3 | 1 0 3 0 1 | * 2 *
.x .x3.o     0 6 | 0 0 3 6 | 0 0 0 3 2 | * * 1

xxoo xoox&#xr   → all heights = sqrt(3)/2 = 0.866025
({4} || pseudo q-laced (line || perp line) || pt)

o(..). o(..).     | 4 * * *  1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 0 0 | 1 1 1 1
.(o.). .(o.).     | * 2 * *  0 0 2 0 1 1 0 0 | 0 2 1 0 0 2 1 0 | 1 0 2 1
.(.o). .(.o).     | * * 2 *  0 0 0 2 0 0 1 1 | 0 0 0 1 2 2 0 1 | 0 1 1 2
.(..)o .(..)o     | * * * 1  0 0 0 0 0 2 0 2 | 0 0 0 0 0 4 1 1 | 0 0 2 2
------------------+---------+-----------------+-----------------+--------
x(..). .(..).     | 2 0 0 0 | 2 * * * * * * * | 1 1 0 1 0 0 0 0 | 1 1 1 0
.(..). x(..).     | 2 0 0 0 | * 2 * * * * * * | 1 0 1 0 1 0 0 0 | 1 1 0 1
o(o.). o(o.).&#x  | 1 1 0 0 | * * 4 * * * * * | 0 1 1 0 0 1 0 0 | 1 0 1 1
o(.o). o(.o).&#x  | 1 0 1 0 | * * * 4 * * * * | 0 0 0 1 1 1 0 0 | 0 1 1 1
.(x.). .(..).     | 0 2 0 0 | * * * * 1 * * * | 0 2 0 0 0 0 1 0 | 1 0 2 0
.(o.)o .(o.)o&#x  | 0 1 0 1 | * * * * * 2 * * | 0 0 0 0 0 2 1 0 | 0 0 2 1
.(..). .(.x).     | 0 0 2 0 | * * * * * * 1 * | 0 0 0 0 2 0 0 1 | 0 1 0 2
.(.o)o .(.o)o&#x  | 0 0 1 1 | * * * * * * * 2 | 0 0 0 0 0 2 0 1 | 0 0 1 2
------------------+---------+-----------------+-----------------+--------
x(..). x(..).     | 4 0 0 0 | 2 2 0 0 0 0 0 0 | 1 * * * * * * * | 1 1 0 0
x(x.). .(..).&#x  | 2 2 0 0 | 1 0 2 0 1 0 0 0 | * 2 * * * * * * | 1 0 1 0
.(..). x(o.).&#x  | 2 1 0 0 | 0 1 2 0 0 0 0 0 | * * 2 * * * * * | 1 0 0 1
x(.o). .(..).&#x  | 2 0 1 0 | 1 0 0 2 0 0 0 0 | * * * 2 * * * * | 0 1 1 0
.(..). x(.x).&#x  | 2 0 2 0 | 0 1 0 2 0 0 1 0 | * * * * 2 * * * | 0 1 0 1
o(oo)o o(oo)o&#xt | 1 1 1 1 | 0 0 1 1 0 1 0 1 | * * * * * 4 * * | 0 0 1 1
.(x.)o .(..).&#x  | 0 2 0 1 | 0 0 0 0 1 2 0 0 | * * * * * * 1 * | 0 0 2 0
.(..). .(.x)o&#x  | 0 0 2 1 | 0 0 0 0 0 0 1 2 | * * * * * * * 1 | 0 0 0 2
------------------+---------+-----------------+-----------------+--------
x(x.). x(o.).&#x   4 2 0 0 | 2 2 4 0 1 0 0 0 | 1 2 2 0 0 0 0 0 | 1 * * *
x(.o). x(.x).&#x   4 0 2 0 | 2 2 0 4 0 0 1 0 | 1 0 0 2 2 0 0 0 | * 1 * *
x(xo)o .(..).&#xt  2 2 1 1 | 1 0 2 2 1 2 0 1 | 0 1 0 1 0 2 1 0 | * * 2 *
.(..). x(ox)o&#xt  2 1 2 1 | 0 1 2 2 0 1 1 2 | 0 0 1 0 1 2 0 1 | * * * 2
or
o(..). o(..).       | 4 * *  2 2 0 0 | 1 2 2 1 0 | 2 2
.(o.). .(o.).     & | * 4 *  0 2 1 1 | 0 2 1 2 1 | 1 3
.(..)o .(..)o       | * * 1  0 0 0 4 | 0 0 0 4 2 | 0 4
--------------------+-------+---------+-----------+----
x(..). .(..).     & | 2 0 0 | 4 * * * | 1 1 1 0 0 | 2 1
o(o.). o(o.).&#x  & | 1 1 0 | * 8 * * | 0 1 1 1 0 | 1 2
.(x.). .(..).     & | 0 2 0 | * * 2 * | 0 2 0 0 1 | 1 2
.(o.)o .(o.)o&#x  & | 0 1 1 | * * * 4 | 0 0 0 2 1 | 0 3
--------------------+-------+---------+-----------+----
x(..). x(..).       | 4 0 0 | 4 0 0 0 | 1 * * * * | 2 0
x(x.). .(..).&#x  & | 2 2 0 | 1 2 1 0 | * 4 * * * | 1 1
.(..). x(o.).&#x  & | 2 1 0 | 1 2 0 0 | * * 4 * * | 1 1
o(oo)o o(oo)o&#xt   | 1 2 1 | 0 2 0 2 | * * * 4 * | 0 2
.(x.)o .(..).&#x  & | 0 2 1 | 0 0 1 2 | * * * * 2 | 0 2
--------------------+-------+---------+-----------+----
x(x.). x(o.).&#x  &  4 2 0 | 4 4 1 0 | 1 2 2 0 0 | 2 *
x(xo)o .(..).&#xr &  2 3 1 | 1 4 1 3 | 0 1 1 2 1 | * 4

© 2004-2024
top of page