Acronym | triddip, K-4.10 |
Name |
triangle-triangle duoprism, triangle - trip wedge, vertex figure of dot, Delone cell of lattice A2×A2, equatorial cross-section of trig-first rix |
© © © | |
Segmentochoron display | |
Circumradius | sqrt(2/3) = 0.816497 |
Inradius | 1/sqrt(12) = 0.288675 |
Vertex figure |
© |
Coordinates |
(εn, εm)/sqrt(3) n,m ∈ {0,1,2} where ε = exp(2πi/3) and R4=C2 |
Volume | 3/16 = 0.1875 |
Surface | sqrt(27)/2 = 2.598076 |
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex) |
Dihedral angles | |
Dual | triddit |
Face vector | 9, 18, 15, 6 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x3o x3o . . . . | 9 ♦ 2 2 | 1 4 1 | 2 2 --------+---+-----+-------+---- x . . . | 2 | 9 * | 1 2 0 | 2 1 . . x . | 2 | * 9 | 0 2 1 | 1 2 --------+---+-----+-------+---- x3o . . | 3 | 3 0 | 3 * * | 2 0 x . x . | 4 | 2 2 | * 9 * | 1 1 . . x3o | 3 | 0 3 | * * 3 | 0 2 --------+---+-----+-------+---- x3o x . ♦ 6 | 6 3 | 2 3 0 | 3 * x . x3o ♦ 6 | 3 6 | 0 3 2 | * 3
or . . . . | 9 ♦ 4 | 2 4 | 4 -----------+---+----+-----+-- x . . . & | 2 | 18 | 1 2 | 3 -----------+---+----+-----+-- x3o . . & | 3 | 3 | 6 * | 2 x . x . | 4 | 4 | * 9 | 2 -----------+---+----+-----+-- x3o x . & ♦ 6 | 9 | 2 3 | 6
s3s x3o demi( . . ) . . | 9 ♦ 2 2 | 1 1 4 | 2 2 ----------------+---+-----+-------+---- demi( . . ) x . | 2 | 9 * | 1 0 2 | 1 2 sefa( s3s ) . . | 2 | * 9 | 0 1 2 | 2 1 ----------------+---+-----+-------+---- demi( . . ) x3o | 3 | 3 0 | 3 * * | 0 2 s3s . . | 3 | 0 3 | * 3 * | 2 0 sefa( s3s ) x . | 4 | 2 2 | * * 9 | 1 1 ----------------+---+-----+-------+---- s3s x . ♦ 6 | 3 6 | 0 2 3 | 3 * sefa( s3s ) x3o ♦ 6 | 6 3 | 2 0 3 | * 3
s3s2x3o demi( . . . . ) | 9 ♦ 2 2 | 1 1 4 | 2 2 ----------------+---+-----+-------+---- demi( . . x . ) | 2 | 9 * | 1 0 2 | 1 2 sefa( s3s . . ) | 2 | * 9 | 0 1 2 | 2 1 ----------------+---+-----+-------+---- demi( . . x3o ) | 3 | 3 0 | 3 * * | 0 2 s3s . . | 3 | 0 3 | * 3 * | 2 0 sefa( s3s2x . ) | 4 | 2 2 | * * 9 | 1 1 ----------------+---+-----+-------+---- s3s2x . ♦ 6 | 3 6 | 0 2 3 | 3 * sefa( s3s2x3o ) ♦ 6 | 6 3 | 2 0 3 | * 3 starting figure: x3x x3o
ox xx3oo&#x → height = sqrt(3)/2 = 0.866025
({3} || trip)
o. o.3o. | 3 * ♦ 2 2 0 0 | 1 1 4 0 0 | 2 2 0
.o .o3.o | * 6 ♦ 0 1 1 2 | 0 1 2 2 1 | 2 1 1
------------+-----+---------+-----------+------
.. x. .. | 2 0 | 3 * * * | 1 0 2 0 0 | 1 2 0
oo oo3oo&#x | 1 1 | * 6 * * | 0 1 2 0 0 | 2 1 0
.x .. .. | 0 2 | * * 3 * | 0 1 0 2 0 | 2 0 1
.. .x .. | 0 2 | * * * 6 | 0 0 1 1 1 | 1 1 1
------------+-----+---------+-----------+------
.. x.3o. | 3 0 | 3 0 0 0 | 1 * * * * | 0 2 0
ox .. ..&#x | 1 2 | 0 2 1 0 | * 3 * * * | 2 0 0
.. xx ..&#x | 2 2 | 1 2 0 1 | * * 6 * * | 1 1 0
.x .x .. | 0 4 | 0 0 2 2 | * * * 3 * | 1 0 1
.. .x3.o | 0 3 | 0 0 0 3 | * * * * 2 | 0 1 1
------------+-----+---------+-----------+------
ox xx ..&#x ♦ 2 4 | 1 4 2 2 | 0 2 2 1 0 | 3 * *
.. xx3oo&#x ♦ 3 3 | 3 3 0 3 | 1 0 3 0 1 | * 2 *
.x .x3.o ♦ 0 6 | 0 0 3 6 | 0 0 0 3 2 | * * 1
xxoo xoox&#xr → all heights = sqrt(3)/2 = 0.866025 ({4} || pseudo q-laced (line || perp line) || pt) o(..). o(..). | 4 * * * ♦ 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 0 0 | 1 1 1 1 .(o.). .(o.). | * 2 * * ♦ 0 0 2 0 1 1 0 0 | 0 2 1 0 0 2 1 0 | 1 0 2 1 .(.o). .(.o). | * * 2 * ♦ 0 0 0 2 0 0 1 1 | 0 0 0 1 2 2 0 1 | 0 1 1 2 .(..)o .(..)o | * * * 1 ♦ 0 0 0 0 0 2 0 2 | 0 0 0 0 0 4 1 1 | 0 0 2 2 ------------------+---------+-----------------+-----------------+-------- x(..). .(..). | 2 0 0 0 | 2 * * * * * * * | 1 1 0 1 0 0 0 0 | 1 1 1 0 .(..). x(..). | 2 0 0 0 | * 2 * * * * * * | 1 0 1 0 1 0 0 0 | 1 1 0 1 o(o.). o(o.).&#x | 1 1 0 0 | * * 4 * * * * * | 0 1 1 0 0 1 0 0 | 1 0 1 1 o(.o). o(.o).&#x | 1 0 1 0 | * * * 4 * * * * | 0 0 0 1 1 1 0 0 | 0 1 1 1 .(x.). .(..). | 0 2 0 0 | * * * * 1 * * * | 0 2 0 0 0 0 1 0 | 1 0 2 0 .(o.)o .(o.)o&#x | 0 1 0 1 | * * * * * 2 * * | 0 0 0 0 0 2 1 0 | 0 0 2 1 .(..). .(.x). | 0 0 2 0 | * * * * * * 1 * | 0 0 0 0 2 0 0 1 | 0 1 0 2 .(.o)o .(.o)o&#x | 0 0 1 1 | * * * * * * * 2 | 0 0 0 0 0 2 0 1 | 0 0 1 2 ------------------+---------+-----------------+-----------------+-------- x(..). x(..). | 4 0 0 0 | 2 2 0 0 0 0 0 0 | 1 * * * * * * * | 1 1 0 0 x(x.). .(..).&#x | 2 2 0 0 | 1 0 2 0 1 0 0 0 | * 2 * * * * * * | 1 0 1 0 .(..). x(o.).&#x | 2 1 0 0 | 0 1 2 0 0 0 0 0 | * * 2 * * * * * | 1 0 0 1 x(.o). .(..).&#x | 2 0 1 0 | 1 0 0 2 0 0 0 0 | * * * 2 * * * * | 0 1 1 0 .(..). x(.x).&#x | 2 0 2 0 | 0 1 0 2 0 0 1 0 | * * * * 2 * * * | 0 1 0 1 o(oo)o o(oo)o&#xt | 1 1 1 1 | 0 0 1 1 0 1 0 1 | * * * * * 4 * * | 0 0 1 1 .(x.)o .(..).&#x | 0 2 0 1 | 0 0 0 0 1 2 0 0 | * * * * * * 1 * | 0 0 2 0 .(..). .(.x)o&#x | 0 0 2 1 | 0 0 0 0 0 0 1 2 | * * * * * * * 1 | 0 0 0 2 ------------------+---------+-----------------+-----------------+-------- x(x.). x(o.).&#x ♦ 4 2 0 0 | 2 2 4 0 1 0 0 0 | 1 2 2 0 0 0 0 0 | 1 * * * x(.o). x(.x).&#x ♦ 4 0 2 0 | 2 2 0 4 0 0 1 0 | 1 0 0 2 2 0 0 0 | * 1 * * x(xo)o .(..).&#xt ♦ 2 2 1 1 | 1 0 2 2 1 2 0 1 | 0 1 0 1 0 2 1 0 | * * 2 * .(..). x(ox)o&#xt ♦ 2 1 2 1 | 0 1 2 2 0 1 1 2 | 0 0 1 0 1 2 0 1 | * * * 2
or o(..). o(..). | 4 * * ♦ 2 2 0 0 | 1 2 2 1 0 | 2 2 .(o.). .(o.). & | * 4 * ♦ 0 2 1 1 | 0 2 1 2 1 | 1 3 .(..)o .(..)o | * * 1 ♦ 0 0 0 4 | 0 0 0 4 2 | 0 4 --------------------+-------+---------+-----------+---- x(..). .(..). & | 2 0 0 | 4 * * * | 1 1 1 0 0 | 2 1 o(o.). o(o.).&#x & | 1 1 0 | * 8 * * | 0 1 1 1 0 | 1 2 .(x.). .(..). & | 0 2 0 | * * 2 * | 0 2 0 0 1 | 1 2 .(o.)o .(o.)o&#x & | 0 1 1 | * * * 4 | 0 0 0 2 1 | 0 3 --------------------+-------+---------+-----------+---- x(..). x(..). | 4 0 0 | 4 0 0 0 | 1 * * * * | 2 0 x(x.). .(..).&#x & | 2 2 0 | 1 2 1 0 | * 4 * * * | 1 1 .(..). x(o.).&#x & | 2 1 0 | 1 2 0 0 | * * 4 * * | 1 1 o(oo)o o(oo)o&#xt | 1 2 1 | 0 2 0 2 | * * * 4 * | 0 2 .(x.)o .(..).&#x & | 0 2 1 | 0 0 1 2 | * * * * 2 | 0 2 --------------------+-------+---------+-----------+---- x(x.). x(o.).&#x & ♦ 4 2 0 | 4 4 1 0 | 1 2 2 0 0 | 2 * x(xo)o .(..).&#xr & ♦ 2 3 1 | 1 4 1 3 | 0 1 1 2 1 | * 4
© 2004-2024 | top of page |