Acronym | ... |
Name | oooxfxooo3xoxoxoxox5ofxfofxfo&#xt |
Face vector | 400, 1260, 1140, 280 |
Confer |
|
The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2oxofx3oooo(-x)5ooxof&#zx. Then into VFfxo2o(-x)ofx3oxoo(-x)5ooxof&#zx. Next into VFfxo2ooofx3o(-x)oo(-x)5ofxof&#zx. And finally into VFf(-x)o2ooofx3o(-x)oo(-x)5ofxof&#zx. Then a Stott expansion wrt. the first and third nodes produces this polychoron.
It further allows for a bistratically parabidiminishing Fxo oxf3xox5xfo&#zxt too.
Incidence matrix according to Dynkin symbol
oooxfxooo3xoxoxoxox5ofxfofxfo&#xt → height(1,2) = height(8,9) = (sqrt(5)-1)/4 = 0.309017 height(2,3) = height(4,5) = height(5,6) = height(7,8) = 1/2 height(3,4) = height(6,7) = (1+sqrt(5))/4 = 0.809017 (id || pseudo f-doe || pseudo tid || pseudo (x,f)-srid || pseudo (f,x)-ti || pseudo (x,f)-srid || pseudo tid || pseudo f-doe || id) o........3o........5o........ & | 60 * * * * | 4 2 0 0 0 0 0 0 0 0 | 2 2 4 1 0 0 0 0 0 0 0 0 0 0 0 | 1 2 2 0 0 0 0 0 0 .o.......3.o.......5.o....... & | * 40 * * * ♦ 0 3 3 0 0 0 0 0 0 0 | 0 0 3 3 3 0 0 0 0 0 0 0 0 0 0 | 0 1 3 1 0 0 0 0 0 ..o......3..o......5..o...... & | * * 120 * * | 0 0 1 2 1 2 0 0 0 0 | 0 0 0 1 2 1 2 1 2 2 0 0 0 0 0 | 0 0 2 1 1 1 2 0 0 ...o.....3...o.....5...o..... & | * * * 120 * | 0 0 0 0 0 2 2 2 1 0 | 0 0 0 0 0 0 0 2 1 2 1 1 2 2 0 | 0 0 0 0 1 2 1 1 1 ....o....3....o....5....o.... | * * * * 60 | 0 0 0 0 0 0 0 4 0 2 | 0 0 0 0 0 0 0 0 0 2 0 4 0 2 1 | 0 0 0 0 0 1 2 0 2 ------------------------------------+------------------+--------------------------------------+-----------------------------------------------------+-------------------------- ......... x........ ......... & | 2 0 0 0 0 | 120 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 0 0 oo.......3oo.......5oo.......&#x & | 1 1 0 0 0 | * 120 * * * * * * * * | 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 | 0 1 2 0 0 0 0 0 0 .oo......3.oo......5.oo......&#x & | 0 1 1 0 0 | * * 120 * * * * * * * | 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 | 0 0 2 1 0 0 0 0 0 ......... ..x...... ......... & | 0 0 2 0 0 | * * * 120 * * * * * * | 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 | 0 0 1 1 1 0 1 0 0 ......... ......... ..x...... & | 0 0 2 0 0 | * * * * 60 * * * * * | 0 0 0 1 0 0 2 0 0 2 0 0 0 0 0 | 0 0 2 0 0 1 2 0 0 ..oo.....3..oo.....5..oo.....&#x & | 0 0 1 1 0 | * * * * * 240 * * * * | 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 | 0 0 0 0 1 1 1 0 0 ...x..... ......... ......... & | 0 0 0 2 0 | * * * * * * 120 * * * | 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 | 0 0 0 0 1 1 0 1 0 ...oo....3...oo....5...oo....&#x & | 0 0 0 1 1 | * * * * * * * 240 * * | 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 | 0 0 0 0 0 1 1 0 1 ...o.o...3...o.o...5...o.o...&#x | 0 0 0 2 0 | * * * * * * * * 60 * | 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 | 0 0 0 0 0 2 0 1 1 ......... ....x.... ......... | 0 0 0 0 2 | * * * * * * * * * 60 | 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 | 0 0 0 0 0 0 2 0 1 ------------------------------------+------------------+--------------------------------------+-----------------------------------------------------+-------------------------- o........3x........ ......... & | 3 0 0 0 0 | 3 0 0 0 0 0 0 0 0 0 | 40 * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 ......... x........5o........ & | 5 0 0 0 0 | 5 0 0 0 0 0 0 0 0 0 | * 24 * * * * * * * * * * * * * | 1 0 1 0 0 0 0 0 0 ......... xo....... .........&#x & | 2 1 0 0 0 | 1 2 0 0 0 0 0 0 0 0 | * * 120 * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0 ......... ......... ofx......&#xt & | 1 2 2 0 0 | 0 2 2 0 1 0 0 0 0 0 | * * * 60 * * * * * * * * * * * | 0 0 2 0 0 0 0 0 0 ......... .ox...... .........&#x & | 0 1 2 0 0 | 0 0 2 1 0 0 0 0 0 0 | * * * * 120 * * * * * * * * * * | 0 0 1 1 0 0 0 0 0 ..o......3..x...... ......... & | 0 0 3 0 0 | 0 0 0 3 0 0 0 0 0 0 | * * * * * 40 * * * * * * * * * | 0 0 0 1 1 0 0 0 0 ......... ..x......5..x...... & | 0 0 10 0 0 | 0 0 0 5 5 0 0 0 0 0 | * * * * * * 24 * * * * * * * * | 0 0 1 0 0 0 1 0 0 ..ox..... ......... .........&#x & | 0 0 1 2 0 | 0 0 0 0 0 2 1 0 0 0 | * * * * * * * 120 * * * * * * * | 0 0 0 0 1 1 0 0 0 ......... ..xo..... .........&#x & | 0 0 2 1 0 | 0 0 0 1 0 2 0 0 0 0 | * * * * * * * * 120 * * * * * * | 0 0 0 0 1 0 1 0 0 ......... ......... ..xfo....&#xt & | 0 0 2 2 1 | 0 0 0 0 1 2 0 2 0 0 | * * * * * * * * * 120 * * * * * | 0 0 0 0 0 1 1 0 0 ...x.....3...o..... ......... & | 0 0 0 3 0 | 0 0 0 0 0 0 3 0 0 0 | * * * * * * * * * * 40 * * * * | 0 0 0 0 1 0 0 1 0 ......... ...ox.... .........&#x & | 0 0 0 1 2 | 0 0 0 0 0 0 0 2 0 1 | * * * * * * * * * * * 120 * * * | 0 0 0 0 0 0 1 0 1 ...x.x... ......... .........&#x | 0 0 0 4 0 | 0 0 0 0 0 0 2 0 2 0 | * * * * * * * * * * * * 60 * * | 0 0 0 0 0 1 0 1 0 ...ooo...3...ooo...5...ooo...&#x | 0 0 0 2 1 | 0 0 0 0 0 0 0 2 1 0 | * * * * * * * * * * * * * 120 * | 0 0 0 0 0 1 0 0 1 ......... ....x....5....o.... | 0 0 0 0 5 | 0 0 0 0 0 0 0 0 0 5 | * * * * * * * * * * * * * * 12 | 0 0 0 0 0 0 2 0 0 ------------------------------------+------------------+--------------------------------------+-----------------------------------------------------+-------------------------- o........3x........5o........ & ♦ 30 0 0 0 0 | 60 0 0 0 0 0 0 0 0 0 | 20 12 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * * oo.......3xo....... .........&#x & ♦ 3 1 0 0 0 | 3 3 0 0 0 0 0 0 0 0 | 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 | * 40 * * * * * * * ......... xox......5ofx......&#xt & ♦ 5 5 10 0 0 | 5 10 10 5 5 0 0 0 0 0 | 0 1 5 5 5 0 1 0 0 0 0 0 0 0 0 | * * 24 * * * * * * .oo......3.ox...... .........&#x & ♦ 0 1 3 0 0 | 0 0 3 3 0 0 0 0 0 0 | 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 | * * * 40 * * * * * ..ox.....3..xo..... .........&#x & ♦ 0 0 3 3 0 | 0 0 0 3 0 6 3 0 0 0 | 0 0 0 0 0 1 0 3 3 0 1 0 0 0 0 | * * * * 40 * * * * ..oxfxo.. ......... ..xfofx..&#xt ♦ 0 0 4 8 2 | 0 0 0 0 2 8 4 8 4 0 | 0 0 0 0 0 0 0 4 0 4 0 0 2 4 0 | * * * * * 30 * * * ......... ..xox....5..xfo....&#xt & ♦ 0 0 10 5 5 | 0 0 0 5 5 10 0 10 0 5 | 0 0 0 0 0 0 1 0 5 5 0 5 0 0 1 | * * * * * * 24 * * ...x.x...3...o.o... .........&#x ♦ 0 0 0 6 0 | 0 0 0 0 0 0 6 0 3 0 | 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 | * * * * * * * 20 * ......... ...oxo... .........&#x ♦ 0 0 0 2 2 | 0 0 0 0 0 0 0 4 1 1 | 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 | * * * * * * * * 60
© 2004-2025 | top of page |